A091894 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having k ddu's [here u = (1,1) and d = (1,-1)].
1, 1, 2, 4, 1, 8, 6, 16, 24, 2, 32, 80, 20, 64, 240, 120, 5, 128, 672, 560, 70, 256, 1792, 2240, 560, 14, 512, 4608, 8064, 3360, 252, 1024, 11520, 26880, 16800, 2520, 42, 2048, 28160, 84480, 73920, 18480, 924, 4096, 67584, 253440, 295680, 110880, 11088, 132
Offset: 0
Examples
T(4,1) = 6 because we have uduu(ddu)d, uu(ddu)dud, uuu(ddu)dd, uu(ddu)udd, uudu(ddu)d and uuud(ddu)d [here u = (1,1), d = (1,-1) and the ddu's are shown between parentheses]. Triangle begins: 1; 1; 2; 4, 1; 8, 6; 16, 24, 2; 32, 80, 20; 64, 240, 120, 5; 128, 672, 560, 70; 256, 1792, 2240, 560, 14; ...
References
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 4.3.
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 7.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vanjovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, Disc. Math. 341 (2018) 2608-2615, Table 1.
- Andrew M. Baxter, Refining enumeration schemes to count according to permutation statistics, arXiv:1401.0337 [math.CO], 2014.
- Michael Bukata, Ryan Kulwicki, Nicholas Lewandowski, Lara Pudwell, Jacob Roth, and Teresa Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv:1812.07112 [math.CO], 2018.
- David Callan, A variant of Touchard's Catalan number identity, arXiv:1204.5704 [math.CO], 2012. - _N. J. A. Sloane_, Oct 10 2012
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Colin Defant, Postorder Preimages, arXiv:1604.01723 [math.CO], 2016.
- Colin Defant, Stack-Sorting Preimages of Permutation Classes, arXiv:1809.03123 [math.CO], 2018.
- Colin Defant, Counting 3-Stack-Sortable Permutations, arXiv:1903.09138 [math.CO], 2019.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 22.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202 (see pp. 192-193)..
- Maciej Dziemiańczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See p. 6.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
- Lara Pudwell, On the distribution of peaks (and other statistics), 16th International Conference on Permutation Patterns, Dartmouth College, 2018. [Broken link]
- John Riordan, A Note on Catalan Parentheses, Amer. Math. Monthly, Vol. 80, No. 8 (1973), pp. 904-906.
- Tom Roberts and Thomas Prellberg, Improving Convergence of Generalised Rosenbluth Sampling for Branched Polymer Models by Uniform Sampling, arXiv:2401.12201 [cond-mat.stat-mech], 2024. See p. 12.
- A. Sapounakis, I. Tasoulas, and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory Ser. A 20 (1976) 375-376.
- Guoce Xin and Jing-Feng Xu, A short approach to Catalan numbers modulo 2^r, Electronic Journal of Combinatorics Vol. 18 Issue 1 (2011), #P177 (see page 2).
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
- Index entries for sequences related to Łukasiewicz.
Crossrefs
Programs
-
GAP
T:=Concatenation([1],Flat(List([1..13],n->List([0..Int((n-1)/2)],k->2^(n-2*k-1)*Binomial(n-1,2*k)*Binomial(2*k,k)/(k+1))))); # Muniru A Asiru, Nov 29 2018
-
Maple
a := proc(n,k) if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)*binomial(n-1,2*k)*binomial(2*k,k)/(k+1) fi end: 1,seq(seq(a(n,k),k=0..(n-1)/2),n=1..15);
-
Mathematica
A091894[n_] := Prepend[Table[ CoefficientList[ 2^i (1 - z)^((2 i + 3)/2) Hypergeometric2F1[(i + 3)/2, (i + 4)/2, 2, z], z], {i, 0, n}], {1}] (* computes a table of the first n rows. Stumbled accidentally on it. Perhaps someone can find a relationship here? Thies Heidecke (theidecke(AT)astrophysik.uni-kiel.de), Sep 23 2008 *) Join[{1},Select[Flatten[Table[2^(n-2k-1) Binomial[n-1,2k] Binomial[2k,k]/ (k+1), {n,20},{k,0,n}]],#!=0&]] (* Harvey P. Dale, Mar 05 2012 *) p[n_] := 2^n Hypergeometric2F1[(1 - n)/2, -n/2, 2, x]; Flatten[Join[{{1}}, Table[CoefficientList[p[n], x], {n, 0, 12}]]] (* Peter Luschny, Jan 23 2018 *)
-
PARI
{T(n, k) = if( n<1, n==0 && k==0, polcoeff( polcoeff( serreverse( x / (1 + 2*x*y + x^2) + x * O(x^n)), n), n-1 - 2*k))} /* Michael Somos, Sep 25 2006 */
-
Sage
[1] + [[2^(n-2*k-1)*binomial(n-1,2*k)*binomial(2*k,k)/(k+1) for k in (0..floor((n-1)/2))] for n in (1..12)] # G. C. Greubel, Nov 30 2018
Formula
T(n,k) = 2^(n - 2*k - 1)*binomial(n-1,2*k)*binomial(2*k,k)/(k + 1), T(0,0) = 1, for 0 <= k <= floor((n-1)/2).
G.f.: G = G(t,z) satisfies: t*z*G^2 - (1 - 2*z + 2*t*z)*G + 1 - z + t*z = 0.
With first row zero, the o.g.f. is g(x,t) = (1 - 2*x - sqrt((1 - 2*x)^2 - 4*t*x^2)) / (2*t*x) with the inverse ginv(x,t) = x / (1 + 2*x + t*x^2), an o.g.f. for shifted A207538 and A133156 mod signs, so A134264 and A125181 can be used to interpret the polynomials of this entry. Cf. A097610. - Tom Copeland, Feb 08 2016
If we delete the first 1 from the data these are the coefficients of the polynomials p(n) = 2^n*hypergeom([(1 - n)/2, - n/2], [2], x). - Peter Luschny, Jan 23 2018
Comments