A007564
Shifts left when INVERT transform applied thrice.
Original entry on oeis.org
1, 1, 4, 19, 100, 562, 3304, 20071, 124996, 793774, 5120632, 33463102, 221060008, 1473830308, 9904186192, 67015401391, 456192667396, 3122028222934, 21467769499864, 148246598341018, 1027656663676600, 7148588698592956, 49884553176689584
Offset: 0
G.f. = 1 + x + 4*x^2 + 19*x^3 + 100*x^4 + 562*x^5 + 3304*x^6 + 20071*x^7 + 124996*x^8 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 100 by T. D. Noe)
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry and Aoife Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.8.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 arXiv:1608.02448 [math.CO], 2016. Eq. (1.13) a=1, b=3.
- C. Coker, A family of eigensequences, Discrete Math. 282 (2004), 249-250.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 443
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
- N. J. A. Sloane, Transforms
-
A007564_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := a[w-1]+3*add(a[j]*a[w-j-1],j=1..w-1) od;
convert(a, list) end: A007564_list(21); # Peter Luschny, May 19 2011
-
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + 3 Sum[a[k-1]a[n-k],{k,n-1}] ; Table[a[n],{n,0,10}] (* David Callan, Aug 25 2009 *)
Table[Hypergeometric2F1[-n, 1 - n, 2, 3], {n, 0, 22}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
Table[(2^n (LegendreP[n+1, 2] - LegendreP[n-1, 2]) + 2 KroneckerDelta[n])/(6n+3), {n, 0, 20}] (* Vladimir Reshetnikov, Nov 01 2015 *)
CoefficientList[Series[(1+2x-Sqrt[1-8x+4x^2])/(6x),{x,0,30}],x] (* Harvey P. Dale, Feb 07 2016 *)
-
{a(n) = if( n<1, n==0, sum( k=0, n, 3^k * binomial( n, k) * binomial( n, k+1)) / n)} /* Michael Somos, Sep 28 2003 */
-
{a(n) = if( n<0, 0, n++; polcoeff( serreverse( x * (1 - 3*x) / (1 - 2*x) + x * O(x^n)), n))} /* Michael Somos, Sep 28 2003 */
-
a(n) = (2^n*(pollegendre(n+1,2)-pollegendre(n-1,2)) + 2*(n==0))/(6*n+3); \\ Michel Marcus, Nov 02 2015
-
x='x+O('x^100); Vec((1+2*x-sqrt(1-8*x+4*x^2))/(6*x)) \\ Altug Alkan, Nov 02 2015
A133156
Irregular triangle read by rows: coefficients of U(n,x), Chebyshev polynomials of the second kind with exponents in decreasing order.
Original entry on oeis.org
1, 2, 4, -1, 8, -4, 16, -12, 1, 32, -32, 6, 64, -80, 24, -1, 128, -192, 80, -8, 256, -448, 240, -40, 1, 512, -1024, 672, -160, 10, 1024, -2304, 1792, -560, 60, -1, 2048, -5120, 4608, -1792, 280, -12, 4096, -11264, 11520, -5376, 1120, -84, 1
Offset: 0
The first few Chebyshev polynomials of the second kind are
1;
2x;
4x^2 - 1;
8x^3 - 4x;
16x^4 - 12x^2 + 1;
32x^5 - 32x^3 + 6x;
64x^6 - 80x^4 + 24x^2 - 1;
128x^7 - 192x^5 + 80x^3 - 8x;
256x^8 - 448x^6 + 240x^4 - 40x^2 + 1;
512x^9 - 1024x^7 + 672x^5 - 160x^3 + 10x;
...
From _Roger L. Bagula_ and _Gary W. Adamson_: (Start)
1;
2;
4, -1;
8, -4;
16, -12, 1;
32, -32, 6;
64, -80, 24, -1;
128, -192, 80, -8;
256, -448, 240, -40, 1;
512, -1024, 672, -160, 10;
1024, -2304, 1792, -560, 60, -1; (End)
From _Philippe Deléham_, Dec 27 2011: (Start)
Triangle (2, 0, 0, 0, 0, ...) DELTA (0, -1/2, 1/2, 0, 0, 0, 0, 0, ...) begins:
1;
2, 0;
4, -1, 0;
8, -4, 0, 0;
16, -12, 1, 0, 0;
32, -32, 6, 0, 0, 0;
64, -80, 24, -1, 0, 0, 0; (End)
- Tracale Austin, Hans Bantilan, Isao Jonas and Paul Kory, The Pfaffian Transformation, Journal of Integer Sequences, Vol. 12 (2009), page 25
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. - From _Tom Copeland_, Oct 11 2014
- Pantelis A. Damianou, A Beautiful Sine Formula, Amer. Math. Monthly 121 (2014), no. 2, 120-135. MR3149030
- Caglar Koca and Ozgur B. Akan, Modelling 1D Partially Absorbing Boundaries for Brownian Molecular Communication Channels, arXiv:2402.15888 [q-bio.MN], 2024. See p. 9.
- Wikipedia, Chebyshev polynomials
-
t[n_, m_] = (-1)^m*Binomial[n - m, m]*2^(n - 2*m);
Table[Table[t[n, m], {m, 0, Floor[n/2]}], {n, 0, 10}];
Flatten[%] (* Roger L. Bagula, Dec 19 2008 *)
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A051288
Triangle read by rows: T(n,k) = number of paths of n upsteps U and n downsteps D that contain k UUDs.
Original entry on oeis.org
1, 2, 4, 2, 8, 12, 16, 48, 6, 32, 160, 60, 64, 480, 360, 20, 128, 1344, 1680, 280, 256, 3584, 6720, 2240, 70, 512, 9216, 24192, 13440, 1260, 1024, 23040, 80640, 67200, 12600, 252, 2048, 56320, 253440, 295680, 92400, 5544, 4096, 135168, 760320
Offset: 0
Table begins
n | k=0 1 2 3
--+-------------------
0 | 1
1 | 2
2 | 4 2
3 | 8 12
4 | 16 48 6
5 | 32 160 60
6 | 64 480 360 20
7 | 128 1344 1680 280
...
a(2,1)=2 because UUDD, DUUD each have one UUD.
- Stanislav Sykora, Table of n, a(n) for n = 0..2600
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Rui Duarte and António Guedes de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.1.
- S. Elizalde, E. Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7 eq (10)
- Aristidis Sapounakis, Panagiotis Tsikouras, Ioannis Tasoulas, and Kostas Manes, Strings of Length 3 in Grand-Dyck Paths and the Chung-Feller Property, Electr. J. Combinatorics, 19 (2012), #P2.
- Stanislav Sykora, Triangle T(n,k) for rows n = 0..100
- Stanislav Sykora, p-Quantum Transitions and a Combinatorial Identity, Stan's Library II, 2007, Identity (1) for p=0.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Hans J. H. Tuenter, Combinatorial Analysis of a Classic Card Trick, Mathematics Magazine, 97(5):551-558, December 2024.
Row sums are the (even) central binomial coefficients
A000984.
A091894 gives the distribution of the parameter "number of DDUs" on Dyck paths.
-
Table[Binomial[n, 2k]2^(n-2k)Binomial[2k, k], {n, 0, 15}, {k, 0, n/2}]
A175136
Triangle T(n,k) read by rows: number of LCO forests of size n with k leaves, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 17, 12, 4, 1, 16, 46, 44, 20, 5, 1, 32, 120, 150, 90, 30, 6, 1, 64, 304, 482, 370, 160, 42, 7, 1, 128, 752, 1476, 1412, 770, 259, 56, 8, 1, 256, 1824, 4344, 5068, 3402, 1428, 392, 72, 9, 1, 512, 4352, 12368, 17285, 14000, 7168, 2436
Offset: 1
Triangle starts
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 17, 12, 4, 1;
16, 46, 44, 20, 5, 1;
32, 120, 150, 90, 30, 6, 1;
64, 304, 482, 370, 160, 42, 7, 1;
128, 752, 1476, 1412, 770, 259, 56, 8, 1;
Triangle (0,1,1,0,1,1,0,...) DELTA (1,0,0,1,0,0,1,...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 4, 6, 3, 1;
0, 8, 17, 12, 4, 1; ... - _Philippe Deléham_, Oct 29 2011
- David Callan, A bijection on Dyck paths and its cycle structure, El. J. Combinat. 14 (2007) # R28.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- David Callan and Emeric Deutsch, The Run Transform, arXiv:1112.3639 [math.CO], 2011.
- K. Manes, A. Sapounakis, I. Tasoulas, and P. Tsikouras, Nonleft peaks in Dyck paths: a combinatorial approach, Discrete Math., 337 (2014), 97-105.
-
lco := proc(siz,leav) (1-(1-4*x*(1-x)/(1-x*y))^(1/2))/2/x ; coeftayl(%,x=0,siz ) ; coeftayl(%,y=0,leav ) ; end proc: seq(seq(lco(n,k),k=1..n),n=1..9) ;
T := proc(n, k): add(A091894(n-k, k1)*binomial(n-k1-1, n-k), k1=0..floor((n-k)/2)) end: A091894 := proc(n, k): if n=0 and k=0 then 1 elif n=0 then 0 else 2^(n-2*k-1)* binomial(n-1, 2*k) * binomial(2*k, k)/(k+1) fi end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, May 06 2011, revised Nov 23 2012
-
A091894[n_, k_] := 2^(n - 2*k - 1)*Binomial[n - 1, 2*k]*(Binomial[2*k, k]/(k + 1)); t[n_, k_] := Sum[A091894[n - k, k1]*Binomial [n - k1 - 1, n - k], {k1, 0, (n - k)/2}]; t[n_, n_] = 1; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten(* Jean-François Alcover, Jun 13 2013, after Johannes W. Meijer *)
A068763
Irregular triangle of the Fibonacci polynomials of A011973 multiplied diagonally by the Catalan numbers.
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 6, 1, 14, 20, 6, 42, 70, 30, 2, 132, 252, 140, 20, 429, 924, 630, 140, 5, 1430, 3432, 2772, 840, 70, 4862, 12870, 12012, 4620, 630, 14, 16796, 48620, 51480, 24024, 4620, 252, 58786, 184756, 218790
Offset: 0
The irregular triangle begins:
n\m 0 1 2 3 4 5
0: 1
1: 1 1
2: 2 2
3: 5 6 1
4: 14 20 6
5: 42 70 30 2
6: 132 252 140 20
7: 429 924 630 140 5
8: 1430 3432 2772 840 70
9: 4862 12870 12012 4620 630 14
10: 16796 48620 51480 24024 4620 252
...
p(3,x) = 5 + 6*x + x^2.
Cf.
A000007(n) (alternating row sums).
-
nn = 10; b[z_] := (1 - Sqrt[1 - 4 z])/(2 z);Map[Select[#, # > 0 &] &,
CoefficientList[Series[v b[v z] /. v -> (1 + u z ), {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Jul 24 2020 *)
A162148
a(n) = n*(n+1)*(5*n+7)/6.
Original entry on oeis.org
0, 4, 17, 44, 90, 160, 259, 392, 564, 780, 1045, 1364, 1742, 2184, 2695, 3280, 3944, 4692, 5529, 6460, 7490, 8624, 9867, 11224, 12700, 14300, 16029, 17892, 19894, 22040, 24335, 26784, 29392, 32164, 35105, 38220, 41514, 44992, 48659, 52520, 56580
Offset: 0
-
[n*(n+1)*(5*n+7)/6: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
A162148:= n-> n*(n+1)*(5*n+7)/6; seq(A162148(n), n=0..50); # G. C. Greubel, Mar 31 2021
-
Table[(n(n+1)(5n+7))/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,4,17,44}, 50] (* Harvey P. Dale, May 20 2014 *)
-
a(n)=n*(n+1)*(5*n+7)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
[n*(n+1)*(5*n+7)/6 for n in (0..50)] # G. C. Greubel, Mar 31 2021
A108838
Triangle of Dyck paths counted by number of long interior inclines.
Original entry on oeis.org
2, 3, 2, 4, 8, 2, 5, 20, 15, 2, 6, 40, 60, 24, 2, 7, 70, 175, 140, 35, 2, 8, 112, 420, 560, 280, 48, 2, 9, 168, 882, 1764, 1470, 504, 63, 2, 10, 240, 1680, 4704, 5880, 3360, 840, 80, 2, 11, 330, 2970, 11088, 19404, 16632, 6930, 1320, 99, 2
Offset: 2
Table begins
\ k..0....1....2....3....4....5
n\
2 |..2
3 |..3....2
4 |..4....8....2
5 |..5...20...15....2
6 |..6...40...60...24....2
7 |..7...70..175..140...35....2
The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3.
From _Joerg Arndt_, Aug 18 2014: (Start)
The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are:
:
: 1: [ 0 1 1 1 ] 2
: O--o
: .--o
: .--o
:
: 2: [ 0 1 1 2 ] 2
: O--o
: .--o--o
:
: 3: [ 0 1 2 1 ] 1
: O--o--o
: .--o
:
: 4: [ 0 1 2 2 ] 1
: O--o--o
: .--o
:
: 5: [ 0 1 2 3 ] 1
: O--o--o--o
:
This gives [3, 2], row n=3 of the triangle.
(End)
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150, flattened)
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, arXiv:1202.1203 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 19 2012
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, Online Journal of Analytic Combinatorics, Issue 8, 2013.
- David Callan, Some Identities for the Catalan and Fine Numbers, arXiv:math/0502532 [math.CO], 2005.
- M. Delest, J. P. Dubernard, and I. Dutour, Parallelogram polyominoes and corners, J. Symbolic Computation, 20(1995),503-515. [From _Emeric Deutsch_, Oct 09 2008]
- M. P. Delest, D. Gouyou-Beauchamps, and B. Vauquelin, Enumeration of parallelogram polyominoes with given bond and site parameter, Graphs and Combinatorics, 3 (1987), 325-339.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See pp. 6, 18, 27.
Row sums are the Catalan numbers
A000108. Column k=1 is
A007290, k=2 is
A006470. The Narayana numbers
A001263 count Dyck paths by number of long nonterminal inclines.
A091894 (Touchard distribution) counts Dyck paths by number of long nonterminal descents.
-
T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; Emeric Deutsch, Jul 23 2006
-
T[n_, 0] = n;
T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))];
Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Werner Schulte *)
A190048
Expansion of (8+6*x)/(1-x)^5.
Original entry on oeis.org
8, 46, 150, 370, 770, 1428, 2436, 3900, 5940, 8690, 12298, 16926, 22750, 29960, 38760, 49368, 62016, 76950, 94430, 114730, 138138, 164956, 195500, 230100, 269100, 312858, 361746, 416150, 476470, 543120, 616528, 697136, 785400, 881790, 986790, 1100898
Offset: 0
-
[(7*n^4+58*n^3+173*n^2+218*n+96)/12: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
A190048 := proc(n) option remember; a(n):=(7*n^4+58*n^3+173*n^2+218*n+96)/12 end: seq(A190048(n),n=0..35);
-
LinearRecurrence[{5,-10,10,-5,1}, {8,46,150,370,770}, 30] (* or *) CoefficientList[Series[(8+6*x)/(1-x)^5, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec((8+6*x)/(1-x)^5) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,50, print1((7*n^4 +58*n^3 +173*n^2 +218*n +96)/12, ", ")) \\ G. C. Greubel, Jan 10 2018
A190049
Expansion of (16+24*x+2*x^2)/(x-1)^6.
Original entry on oeis.org
16, 120, 482, 1412, 3402, 7168, 13692, 24264, 40524, 64504, 98670, 145964, 209846, 294336, 404056, 544272, 720936, 940728, 1211098, 1540308, 1937474, 2412608, 2976660, 3641560, 4420260, 5326776, 6376230, 7584892
Offset: 0
-
[(21*n^5+245*n^4+1105*n^3+2395*n^2+2474*n+960)/60: n in [0..50]]; // Vincenzo Librandi, May 07 2011
-
A190049 := proc(n) option remember; a(n):=(21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60 end: seq(A190049(n),n=0..27);
-
LinearRecurrence[{6,-15,20,-15,6,-1}, {16,120,482,1412,3402,7168}, 30] (* or *) CoefficientList[Series[(16 +24*x +2*x^2)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec((16 +24*x +2*x^2)/(1-x)^6) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,30, print1((21*n^5 +245*n^4 +1105*n^3 +2395*n^2 +2474*n +960)/60, ", ")) \\ G. C. Greubel, Jan 10 2018
Showing 1-10 of 21 results.
Comments