A091998 Numbers that are congruent to {1, 11} mod 12.
1, 11, 13, 23, 25, 35, 37, 47, 49, 59, 61, 71, 73, 83, 85, 95, 97, 107, 109, 119, 121, 131, 133, 143, 145, 155, 157, 167, 169, 179, 181, 191, 193, 203, 205, 215, 217, 227, 229, 239, 241, 251, 253, 263, 265, 275, 277, 287, 289, 299, 301, 311, 313, 323, 325, 335
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a091998 n = a091998_list !! (n-1) a091998_list = 1 : 11 : map (+ 12) a091998_list -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[ n: n in [1..350] | n mod 12 eq 1 or n mod 12 eq 11 ];
-
Mathematica
LinearRecurrence[{1,1,-1},{1,11,13},100] (* Harvey P. Dale, Jul 26 2017 *)
-
PARI
is(n)=n=n%12;n==11 || n==1 \\ Charles R Greathouse IV, Jul 02 2013
Formula
a(n) = 12*n - a(n-1) - 12 (with a(1)=1). - Vincenzo Librandi, Nov 16 2010
a(n) = 6*n + 2*(-1)^n - 3.
G.f.: x*(1+10*x+x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) = a(n-2) + 12 for n > 2.
a(n) = 12*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 + sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + (6*x - 3)*exp(x) + 2*exp(-x). - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2 + sqrt(3)) = 2*cos(Pi/12) (A188887).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/3)*cos(Pi/12). (End)
Extensions
Formulae and comment added by Bruno Berselli, Nov 17 2010 - Nov 18 2010
Comments