cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A091999 Numbers that are congruent to {2, 10} mod 12.

Original entry on oeis.org

2, 10, 14, 22, 26, 34, 38, 46, 50, 58, 62, 70, 74, 82, 86, 94, 98, 106, 110, 118, 122, 130, 134, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 202, 206, 214, 218, 226, 230, 238, 242, 250, 254, 262, 266, 274, 278, 286, 290, 298, 302, 310, 314, 322, 326, 334
Offset: 1

Views

Author

Ray Chandler, Feb 21 2004

Keywords

Comments

Numbers divisible by 2 but not by 3 or 4. - Robert Israel, Apr 24 2015
For n > 1, a(n) is representable as a sum of four but no fewer consecutive nonnegative integers, i.e., 10 = 1 + 2 + 3 + 4, 14 = 2 + 3 + 4 + 5, 22 = 4 + 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016
Essentially the same as A063221. - Omar E. Pol, Aug 16 2023

Crossrefs

Second row of A092260.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a091999 n = a091999_list !! (n-1)
    a091999_list = 2 : 10 : map (+ 12) a091999_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Magma
    [6*n-3+(-1)^n : n in [1..100]]; // Wesley Ivan Hurt, Apr 23 2015
    
  • Maple
    A091999:=n->6*n-3+(-1)^n: seq(A091999(n), n=1..100); # Wesley Ivan Hurt, Apr 23 2015
  • Mathematica
    Flatten[#+{2,10}&/@(12*Range[0,30])] (* or *) LinearRecurrence[{1,1,-1},{2,10,14},60] (* Harvey P. Dale, Jun 24 2013 *)
  • PARI
    a(n) = 6*n - 3 + (-1)^n \\ David Lovler, Jul 16 2022

Formula

a(n) = 2*A007310(n).
a(n) = A186424(n) - A186424(n-2), for n > 1.
a(n) = 12*(n-1) - a(n-1), with a(1)=2. - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(1+4*x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1) + a(n-2) - a(n-3); a(1)=2, a(2)=10, a(3)=14. - Harvey P. Dale, Jun 24 2013
a(n) = 6*n - 3 + (-1)^n. - Wesley Ivan Hurt, Apr 23 2015
E.g.f.: 2 + (6*x - 2)*cosh(x) + 2*(3*x - 2)*sinh(x). - Stefano Spezia, May 09 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)). - Amiram Eldar, Dec 13 2021
E.g.f.: 2 + (6*x - 3)*exp(x) + exp(-x). - David Lovler, Aug 08 2022
a(n) = A063221(n), n > 1. - Omar E. Pol, Aug 15 2023
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2) (A002193).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/12) (A101263). (End)