cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A092059 Primes in A092058.

Original entry on oeis.org

2, 5, 7, 13, 17, 29, 31, 37, 41, 47, 59, 71, 73, 103, 113, 131, 139, 179, 251, 257, 281, 283, 317, 337, 349, 353, 383, 397, 409, 421, 467, 487, 491, 599, 601, 607, 683, 727, 787, 857, 863, 907, 991, 997, 1009, 1021, 1061, 1091, 1097, 1129, 1151, 1193, 1217
Offset: 0

Views

Author

mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004

Keywords

Crossrefs

Programs

  • PARI
    for (i=1,1500,if(isprime(i) && isprime(2*prime(i)^2-1),print1(i,",")))

A092060 Primes not in A092058.

Original entry on oeis.org

3, 11, 19, 23, 43, 53, 61, 67, 79, 83, 89, 97, 101, 107, 109, 127, 137, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 263, 269, 271, 277, 293, 307, 311, 313, 331, 347, 359, 367, 373, 379, 389, 401, 419, 431, 433, 439
Offset: 0

Views

Author

mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004

Keywords

Crossrefs

Programs

  • PARI
    for (i=1,1500,if(isprime(i) && !isprime(2*prime(i)^2-1),print1(i,",")))

A106483 Primes p such that 2*p^2 - 1 is also prime.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 41, 43, 59, 73, 109, 113, 127, 137, 157, 179, 181, 197, 199, 211, 251, 263, 277, 293, 311, 353, 367, 379, 409, 419, 433, 487, 563, 571, 577, 617, 619, 659, 701, 739, 743, 757, 797, 811, 827, 829, 839, 857, 937, 941, 1009, 1039, 1063
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2005

Keywords

Crossrefs

Cf. A000040, A001358, A007588, A106482, A106484, A177104 (2p^3-1 prime), A182785 (2p^4-1 prime)
Cf. A092057 (2p^2 - 1).

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|  IsPrime(2*p^2-1)]; // Vincenzo Librandi, Jan 29 2011
  • Maple
    q:= p-> andmap(isprime, [p, 2*p^2-1]):
    select(q, [$2..2000])[];  # Alois P. Heinz, Jun 21 2022
  • Mathematica
    Select[Table[Prime[n], {n, 500}], PrimeQ[2*#^2 - 1] &] (* Ray Chandler, May 03 2005 *)

Formula

a(n) is in this sequence iff A007588(a(n)) is an element of A001358.
a(n) is in this sequence iff A106482(a(n)) = 2.
a(n) is in this sequence iff a(n) is prime and 2*a(n)^2-1 is also prime.
a(n) = prime(A092058(n)). - R. J. Mathar, Aug 20 2019

Extensions

Extended by Ray Chandler, May 03 2005

A092057 Primes of the form 2*p^2 - 1, where p is prime.

Original entry on oeis.org

7, 17, 97, 241, 337, 577, 3361, 3697, 6961, 10657, 23761, 25537, 32257, 37537, 49297, 64081, 65521, 77617, 79201, 89041, 126001, 138337, 153457, 171697, 193441, 249217, 269377, 287281, 334561, 351121, 374977, 474337, 633937, 652081, 665857
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004

Keywords

Crossrefs

Cf. A092058.
Cf. A106483 (primes p such that 2p^2 - 1 is also prime).

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[r=2*p^2-1],AppendTo[lst,r]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 20 2009 *)
    Select[2#^2-1&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    for (i=1,300,if(isprime(2*prime(i)^2-1),print1(2*prime(i)^2-1,",")))

A220789 Numbers n such that 2*prime(n)^2 - 1 is not prime.

Original entry on oeis.org

3, 8, 9, 10, 11, 12, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 32, 34, 35, 36, 38, 39, 40, 43, 44, 48, 49, 50, 51, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 67, 68, 69, 70, 72, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2013

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..220]| not IsPrime(2*NthPrime(n)^2-1)];
  • Mathematica
    Select[Range[200], !PrimeQ[2Prime[#]^2 - 1]&]
Showing 1-5 of 5 results.