cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A063440 Number of divisors of n-th triangular number.

Original entry on oeis.org

1, 2, 4, 4, 4, 4, 6, 9, 6, 4, 8, 8, 4, 8, 16, 8, 6, 6, 8, 16, 8, 4, 12, 18, 6, 8, 16, 8, 8, 8, 10, 20, 8, 8, 24, 12, 4, 8, 24, 12, 8, 8, 8, 24, 12, 4, 16, 24, 9, 12, 16, 8, 8, 16, 24, 24, 8, 4, 16, 16, 4, 12, 36, 24, 16, 8, 8, 16, 16, 8, 18, 18, 4, 12, 24, 16, 16, 8, 16, 40, 10, 4, 16
Offset: 1

Views

Author

Henry Bottomley, Jul 24 2001

Keywords

Comments

a(n) = 4 iff either n is in A005383 or n/2 is in A005384.
a(n) is odd iff n is in A001108.
a(n) = 6 if either n = 18 or n = q^2 where q is in A048161 or n = 2 q^2 - 1 where q is in A106483. - Robert Israel, Oct 26 2015
From Bernard Schott, Aug 29 2020: (Start)
a(n-1) is the number of solutions in positive integers (x, y, z) to the simultaneous equations (x + y - z = n, x^2 + y^2 - z^2 = n) for n > 1. See the British Mathematical Olympiad link. In this case, one always has z > x and z > y.
For n = 12 as in the Olympiad problem, the a(11) = 8 solutions are (13,78,79), (14,45,47), (15,34,37), (18,23,29), (23,18,29), (34,15,37), (45,14,47), (78,13,79). (End)

Examples

			a(6) = 4 since 1+2+3+4+5+6 = 21 has four divisors {1,3,7,21}.
		

References

  • Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 2 of the British Mathematical Olympiad 2007, page 28.

Crossrefs

Cf. A001108, A005383, A005384, A048161, A060778, A081978 (greedy inverse), A106483, A101755 (indices of records), A101756 (records).

Programs

  • Maple
    seq(numtheory:-tau(n*(n+1)/2), n=1..100); # Robert Israel, Oct 26 2015
  • Mathematica
    DivisorSigma[0,#]&/@Accumulate[Range[90]] (* Harvey P. Dale, Apr 15 2019 *)
  • PARI
    for (n=1, 10000, write("b063440.txt", n, " ", numdiv(n*(n + 1)/2)) ) \\ Harry J. Smith, Aug 21 2009
    
  • PARI
    a(n)=factorback(apply(numdiv,if(n%2,[n,(n+1)/2],[n/2,n+1]))) \\ Charles R Greathouse IV, Dec 27 2014
    
  • PARI
    vector(100, n, numdiv(n*(n+1)/2)) \\ Altug Alkan, Oct 26 2015

Formula

a(n) = A000005(A000217(n)).
From Robert Israel, Oct 26 2015: (Start)
a(2k) = A000005(k)*A000005(2k+1).
a(2k+1) = A000005(2k+1)*A000005(k+1).
gcd(a(2k), a(2k+1)) = A000005(2k+1) * A060778(k). (End)

A092057 Primes of the form 2*p^2 - 1, where p is prime.

Original entry on oeis.org

7, 17, 97, 241, 337, 577, 3361, 3697, 6961, 10657, 23761, 25537, 32257, 37537, 49297, 64081, 65521, 77617, 79201, 89041, 126001, 138337, 153457, 171697, 193441, 249217, 269377, 287281, 334561, 351121, 374977, 474337, 633937, 652081, 665857
Offset: 1

Views

Author

Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004

Keywords

Crossrefs

Cf. A092058.
Cf. A106483 (primes p such that 2p^2 - 1 is also prime).

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[r=2*p^2-1],AppendTo[lst,r]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 20 2009 *)
    Select[2#^2-1&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    for (i=1,300,if(isprime(2*prime(i)^2-1),print1(2*prime(i)^2-1,",")))

A213078 Primes p such that 2p^2-1 and 3p^2-2 are also prime.

Original entry on oeis.org

199, 311, 379, 409, 419, 659, 941, 1009, 1439, 2351, 2789, 3079, 3221, 4421, 4999, 5351, 5531, 5839, 6299, 7129, 7321, 7349, 8819, 9029, 10091, 10151, 10391, 10459, 11131, 11551, 12251, 12391, 13049, 13759, 14281, 14669, 15091, 15329, 15581, 16381, 16811
Offset: 1

Views

Author

Zak Seidov, Jun 04 2012

Keywords

Comments

Subsequence of A106483: a(1)=A106483(19), a(2)=A106483(25),
a(3)=A106483(28).

Crossrefs

Cf. A106483.

Programs

  • Magma
    [p: p in PrimesUpTo(17000) | IsPrime(2*p^2-1)and IsPrime(3*p^2-2)]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    Select[Prime[Range[2000]], PrimeQ[2 #^2 - 1] && PrimeQ[3 #^2 - 2] &] (* T. D. Noe, Jun 06 2012 *)

A230351 Number of ordered ways to write n = p + q (q > 0) with p, 2*p^2 - 1 and 2*q^2 - 1 all prime.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 1, 1, 3, 3, 2, 1, 4, 3, 4, 2, 4, 3, 4, 5, 4, 2, 3, 6, 3, 3, 3, 5, 2, 3, 3, 3, 1, 2, 4, 2, 2, 3, 3, 1, 5, 2, 3, 3, 7, 3, 5, 4, 6, 3, 5, 6, 5, 5, 3, 6, 2, 5, 5, 3, 4, 5, 6, 2, 6, 6, 5, 1, 5, 3, 3, 3, 2, 2, 5, 6, 5, 1, 5, 6, 4, 4, 6, 6, 1, 5, 5, 4, 3, 4, 3, 3, 6, 5, 4, 1, 5, 7, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 16 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
We have verified this for n up to 2*10^7.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Aug 07 2023

Examples

			a(7) = 1 since 7 = 3 + 4 with 3, 2*3^2 - 1 = 17, 2*4^2 - 1 = 31 all prime.
a(40) = 1 since 40 = 2 + 38, and 2, 2*2^2 - 1 = 7 , 2*38^2 - 1 = 2887 are all prime.
a(68) = 1 since 68 = 43 + 25, and all the three numbers 43, 2*43^2 - 1 = 3697 and 2*25^2 - 1 = 1249 are prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2Prime[i]^2-1]&&PrimeQ[2(n-Prime[i])^2-1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A213079 Primes p such that 2p^2-1, 3p^2-2 and 4p^2-3 are also prime.

Original entry on oeis.org

409, 941, 6299, 10459, 11131, 11551, 15581, 16831, 17321, 17569, 25771, 25969, 26701, 31511, 36131, 40529, 43781, 50231, 52879, 54631, 54779, 56711, 60271, 61331, 70321, 71081, 83101, 83299, 85931, 100649, 110681, 116381, 118409, 118751, 120641, 130469
Offset: 1

Views

Author

Zak Seidov, Jun 04 2012

Keywords

Comments

Subsequence of A213078:
a(1) = 409 = A213078(4) = A106483(29) = A000040(80),
a(2) = 941 = A213078(7) = A106483(50) = A000040(160).

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(140000) | IsPrime(2*p^2-1) and IsPrime(3*p^2-2) and IsPrime(4*p^2-3)]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    Select[Prime[Range[20000]], PrimeQ[2 #^2 - 1] && PrimeQ[3 #^2 - 2] && PrimeQ[4 #^2 - 3] &] (* T. D. Noe, Jun 06 2012 *)
    Select[Prime[Range[12500]],AllTrue[{2#^2-1,3#^2-2,4#^2-3},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2015 *)

A092058 Numbers n such that 2*prime(n)^2 - 1 is prime.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 13, 14, 17, 21, 29, 30, 31, 33, 37, 41, 42, 45, 46, 47, 54, 56, 59, 62, 64, 71, 73, 75, 80, 81, 84, 93, 103, 105, 106, 113, 114, 120, 126, 131, 132, 134, 139, 141, 144, 145, 146, 148, 159, 160, 169, 175, 179, 183, 185, 186, 188, 192, 212, 217, 220
Offset: 1

Views

Author

mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004

Keywords

Examples

			2*prime(1)^2 - 1 = 7 is prime so a(1)=1;
2*prime(2)^2 - 1 = 17 is prime so a(2)=2;
2*prime(3)^2 - 1 = 97 is not prime;
2*prime(4)^2 - 1 = 241 is prime so a(3)=4.
		

Crossrefs

Cf. A092057.

Programs

  • Magma
    [n: n in [1..220]| IsPrime(2*NthPrime(n)^2-1)]; // Vincenzo Librandi, Jan 18 2013
  • Mathematica
    Select[Range[500],PrimeQ[2Prime[#]^2-1]&] (* Harvey P. Dale, Dec 13 2010 *)
  • PARI
    for (i=1,300,if(isprime(2*prime(i)^2-1),print1(i,",")))
    

Formula

A106483(n) = prime(a(n)) . - R. J. Mathar, Aug 20 2019

A182785 Primes p such that 2*p^4-1 is also prime.

Original entry on oeis.org

2, 5, 7, 47, 79, 103, 131, 139, 149, 173, 197, 229, 307, 313, 331, 373, 439, 541, 547, 593, 659, 743, 761, 797, 853, 859, 863, 883, 919, 937, 1051, 1093, 1097, 1163, 1171, 1301, 1303, 1451, 1471, 1549, 1601, 1657, 1721, 1861, 1973, 2039, 2081, 2087, 2099, 2129, 2161, 2239, 2269, 2393, 2417, 2437, 2473, 2521
Offset: 1

Views

Author

Vincenzo Librandi, Dec 02 2010

Keywords

Crossrefs

Cf. A182783, A182784, A106483 (2p^2-1 prime), A177104 (2p^3-1 prime), A309855 (2p^5-1 prime).

Programs

  • Magma
    [p: p in PrimesUpTo(2600)| IsPrime(2*p^4 - 1)]; // Vincenzo Librandi, Apr 17 2013
  • Mathematica
    Select[Prime[Range[500]], PrimeQ[2 #^4 - 1]&] (* Vincenzo Librandi, Apr 17 2013 *)

Formula

A000040 INTERSECT A182783.

A213107 Primes p such that 2p^2-1, 3p^2-2, 4p^2-3, and 5p^2-4 are also prime.

Original entry on oeis.org

17569, 43781, 70321, 229561, 251231, 426131, 426551, 453289, 635051, 727201, 729791, 741709, 944689, 981091, 1015309, 1078081, 1128761, 1228429, 1231229, 1282961, 1289149, 1302349, 1351099, 1723481, 1763159, 1823779, 2078339, 2260889, 2336519, 2357879
Offset: 1

Views

Author

Zak Seidov, Jun 05 2012

Keywords

Comments

Subsequence of A213079: a(1) = 17569 = A213079(10) =A213078(44)= A106483(389) = A000040(2019).

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2500000) | forall{i*p^2-i+1: i in [2..5] | IsPrime(i*p^2-i+1)}]; // Vincenzo Librandi, Apr 08 2013
  • Mathematica
    Select[Prime[Range[200000]], PrimeQ[2 #^2 - 1] && PrimeQ[3 #^2 - 2] && PrimeQ[4 #^2 - 3] && PrimeQ[5 #^2 - 4] &] (* T. D. Noe, Jun 06 2012 *)

A292989 Triangular numbers having exactly 6 divisors.

Original entry on oeis.org

28, 45, 153, 171, 325, 4753, 7381, 29161, 56953, 65341, 166753, 354061, 5649841, 6060421, 6835753, 6924781, 12708361, 19478161, 24231241, 52035301, 56791153, 147258541, 186660181, 282304441, 326081953, 520273153, 536657941, 704531953, 784139401, 1215121753
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 08 2017

Keywords

Comments

Intersection of A000217 (triangular numbers) and A030515 (numbers with exactly 6 divisors).
This sequence is also the union of
(1) numbers of the form p*(2p-1) where p is prime and 2p-1 is the square of a prime (this sequence begins 45, 325, 7381, 65341, 354061, ...),
(2) numbers of the form p^2*(2p^2 - 1) where both p and 2p^2 - 1 are prime (this sequence begins 28, 153, 4753, 29161, ...), and
(3) numbers of the form p^2*(2p^2 + 1) where both p and 2p^2 + 1 are prime (the only such number is 171).

Examples

			28 = 2^2 * 7, so it has 6 divisors: {1, 2, 4, 7, 14, 28};
45 = 3^2 * 5, so it has 6 divisors: {1, 3, 5, 9, 15, 45};
171 = 3^2 * 19, so it has 6 divisors: {1, 3, 9, 19, 57, 171}.
		

Crossrefs

Cf. A000217 (triangular numbers), A030515 (numbers with exactly 6 divisors).
Cf. A067756 (primes p such that 2p-1 is the square of a prime), A106483 (primes p such that 2p^2 - 1 is prime).
Cf. A263951.

Programs

  • Mathematica
    Select[Array[PolygonalNumber, 10^5], DivisorSigma[0, #] == 6 &] (* Michael De Vlieger, Dec 09 2017 *)

A230493 Number of ways to write n = (2-(n mod 2))*p + q + r with p <= q <= r such that p, q, r, 2*p^2 - 1, 2*q^2 - 1, 2*r^2 - 1 are all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 3, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 2, 1, 3, 3, 1, 3, 2, 4, 1, 2, 2, 4, 3, 3, 2, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 2, 2, 2, 3, 3, 2, 4, 3, 2, 3, 5, 1, 4, 3, 3, 2, 4, 4, 3, 4, 5, 2, 4, 5, 4, 3, 2, 4, 4, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 20 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 6.
This is stronger than Goldbach's weak conjecture which was finally proved by H. Helfgott in 2013. It also implies that there are infinitely many primes p with 2*p^2 - 1 also prime.
We have verified the conjecture for n up to 10^6.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Sep 22 2023
See also A230351, A230494 and A230502 for similar conjectures.

Examples

			a(14) = 1 since 14 = 2*2 + 3 + 7 with 2, 3, 7, 2*2^2 - 1 = 7, 2*3^2 - 1 = 17, 2*7^2 - 1 = 97 all prime.
a(19) = 1 since 19 = 3 + 3 + 13, and 3, 13, 2*3^2 - 1 = 17 and 2*13^2 - 1 = 337 are all prime.
a(53) = 1 since 53 = 3 + 7 + 43, and all the six numbers 3, 7, 43, 2*3^2 - 1 = 17, 2*7^2 - 1 = 97, 2*43^2 - 1 = 3697 are prime.
		

Crossrefs

Programs

  • Mathematica
    pp[n_]:=PrimeQ[2n^2-1]
    pq[n_]:=PrimeQ[n]&&pp[n]
    a[n_]:=Sum[If[pp[Prime[i]]&&pp[Prime[j]]&&pq[n-(2-Mod[n,2])Prime[i]-Prime[j]],1,0],{i,1,PrimePi[n/(4-Mod[n,2])]},{j,i,PrimePi[(n-(2-Mod[n,2])Prime[i])/2]}]
    Table[a[n],{n,1,100}]
Showing 1-10 of 25 results. Next