cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106483 Primes p such that 2*p^2 - 1 is also prime.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 41, 43, 59, 73, 109, 113, 127, 137, 157, 179, 181, 197, 199, 211, 251, 263, 277, 293, 311, 353, 367, 379, 409, 419, 433, 487, 563, 571, 577, 617, 619, 659, 701, 739, 743, 757, 797, 811, 827, 829, 839, 857, 937, 941, 1009, 1039, 1063
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2005

Keywords

Crossrefs

Cf. A000040, A001358, A007588, A106482, A106484, A177104 (2p^3-1 prime), A182785 (2p^4-1 prime)
Cf. A092057 (2p^2 - 1).

Programs

  • Magma
    [p: p in PrimesUpTo(2500)|  IsPrime(2*p^2-1)]; // Vincenzo Librandi, Jan 29 2011
  • Maple
    q:= p-> andmap(isprime, [p, 2*p^2-1]):
    select(q, [$2..2000])[];  # Alois P. Heinz, Jun 21 2022
  • Mathematica
    Select[Table[Prime[n], {n, 500}], PrimeQ[2*#^2 - 1] &] (* Ray Chandler, May 03 2005 *)

Formula

a(n) is in this sequence iff A007588(a(n)) is an element of A001358.
a(n) is in this sequence iff A106482(a(n)) = 2.
a(n) is in this sequence iff a(n) is prime and 2*a(n)^2-1 is also prime.
a(n) = prime(A092058(n)). - R. J. Mathar, Aug 20 2019

Extensions

Extended by Ray Chandler, May 03 2005

A182783 Numbers k such that 2*k^4 - 1 is a prime.

Original entry on oeis.org

2, 5, 6, 7, 8, 9, 14, 16, 21, 27, 28, 34, 42, 44, 47, 48, 50, 51, 62, 63, 65, 68, 70, 75, 76, 79, 82, 84, 93, 96, 98, 103, 106, 114, 120, 121, 124, 131, 133, 138, 139, 147, 148, 149, 156, 166, 169, 173, 174, 182, 195, 197, 201, 203, 216, 218, 225, 229, 237, 240, 243, 247, 253, 275, 282, 292, 299, 300, 307, 309, 310
Offset: 1

Views

Author

Vincenzo Librandi, Dec 02 2010

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..1000]| IsPrime(2*n^4-1)];
  • Mathematica
    Select[Range[350],PrimeQ[2#^4-1]&] (* Harvey P. Dale, Sep 12 2011 *)

A309855 Primes p such that 2*p^5-1 is also prime.

Original entry on oeis.org

7, 151, 379, 547, 631, 727, 769, 1531, 1627, 1741, 1789, 1999, 2131, 2437, 2659, 2797, 2857, 2917, 3217, 3331, 3511, 3919, 3931, 4591, 4651, 4759, 4801, 4831, 4957, 5281, 5689, 5701, 5779, 5821, 5881, 6067, 6217, 6361, 6619, 6871, 7039, 7309, 7489, 7927, 8179, 8221, 8329, 8581, 8641
Offset: 1

Views

Author

R. J. Mathar, Aug 20 2019

Keywords

Crossrefs

Cf. A182785 (2*p^4-1 prime), A177104 (2*p^3-1 prime), A309854 (2*n^5-1 prime).

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[#]&&PrimeQ[2*(#^5)-1] &] (* Metin Sariyar, Aug 21 2019 *)
    Select[Prime[Range[1100]],PrimeQ[2#^5-1]&] (* Harvey P. Dale, Jul 19 2025 *)

Formula

A000040 INTERSECT A309854.

A182784 Primes of the form 2*n^4-1.

Original entry on oeis.org

31, 1249, 2591, 4801, 8191, 13121, 76831, 131071, 388961, 1062881, 1229311, 2672671, 6223391, 7496191, 9759361, 10616831, 12499999, 13530401, 29552671, 31505921, 35701249, 42762751, 48019999, 63281249, 66724351, 77900161, 90424351, 99574271, 149610401
Offset: 1

Views

Author

Vincenzo Librandi, Dec 02 2010

Keywords

Comments

Subsequence of A066436. - R. J. Mathar, Dec 02 2010

Crossrefs

Programs

  • Magma
    [a: n in [1..350] | IsPrime(a) where a is 2*n^4-1];
  • Mathematica
    Select[Table[2 n^4 - 1, {n, 100}], PrimeQ] (* Vincenzo Librandi, Sep 01 2012 *)

Formula

a(n) = 2*A182783(n)^4-1. - R. J. Mathar, Dec 02 2010

A229627 a(n) is the smallest prime q such that 2*q^k - 1 is prime for k = 1, 2, ..., n.

Original entry on oeis.org

2, 2, 3, 92581, 385939, 464938699, 24137752519, 1095265755949
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 27 2013

Keywords

Comments

The prime number 2 in the definition is used because 2 is the only prime p such that p*q^k - 1 can be prime for more than one prime q.
a(9) > 3*10^13. - Tyler Busby, Jan 14 2023

Crossrefs

Programs

  • Mathematica
    a[1]=2;a[n_]:=a[n]=(For[m=PrimePi[a[n-1]],Union[Table[PrimeQ[2 Prime[m]^k-1],{k,n}]]!={True},m++];Prime[m])
  • PARI
    a(n)=forprime(m=2,,for(k=1,n,if(!ispseudoprime(2*m^k-1), next(2))); return(m)) \\ Charles R Greathouse IV, Oct 01 2013

Extensions

a(7) from Giovanni Resta, Oct 01 2013
a(8) from Tyler Busby, Jan 06 2023
Showing 1-5 of 5 results.