cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181779 Duplicate of A092134.

Original entry on oeis.org

2, 5, 1, 1, 1, 1, 10, 1, 1, 2, 8, 7643, 4, 1, 51, 2, 2, 8, 5, 2, 1, 6, 5, 4, 1, 42, 2, 1, 1, 1, 1, 1, 1, 1, 6, 2, 6, 2, 12, 2, 1, 6, 3, 13, 11, 2, 9, 2, 1, 4, 1, 2, 1, 6, 3, 1, 1, 1, 11, 3, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3, 1, 56, 1, 24, 6, 20, 3, 27, 2, 1, 2, 1, 2, 5, 2, 1, 1, 14, 1, 91, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 16, 21
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Continued fraction for phi^phi.

Examples

			2.178457567937599147372545... = 2 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...))))).
		

References

  • H. Walser, The Golden Section, Math. Assoc. of Amer, Washington DC 2001.
  • C. J. Willard, Le nombre d'or, Magnard, Paris 1987.

Crossrefs

Cf. A144749 (decimal expansion).

Programs

  • Maple
    with(numtheory):Digits:= 300: x:=(sqrt(5)+1)/2:convert(evalf(x^x), confrac);
  • Mathematica
    ContinuedFraction[GoldenRatio^ GoldenRatio, 100 ]
  • PARI
    phi=(1+sqrt(5))/2;contfrac(phi^phi) \\ Charles R Greathouse IV, Jul 29 2011

Extensions

Offset changed and missing term inserted by Andrew Howroyd, Jul 08 2024

A144749 Decimal expansion of the golden ratio powered to itself.

Original entry on oeis.org

2, 1, 7, 8, 4, 5, 7, 5, 6, 7, 9, 3, 7, 5, 9, 9, 1, 4, 7, 3, 7, 2, 5, 4, 5, 7, 0, 2, 8, 7, 1, 2, 4, 5, 8, 5, 1, 8, 0, 7, 0, 4, 3, 3, 0, 1, 6, 9, 3, 2, 5, 4, 6, 1, 1, 3, 4, 7, 7, 8, 1, 9, 2, 4, 0, 4, 7, 4, 4, 0, 4, 4, 9, 5, 3, 2, 8, 2, 6, 2, 0, 2, 1, 0, 7, 0, 1, 6, 7, 6, 1, 1, 9, 7, 6, 7, 0, 5, 8, 7, 6, 5, 4, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Sep 20 2008

Keywords

Comments

See A092134 for the continued fraction of this value, phi^phi, where phi = (sqrt(5)+1)/2 = A001622. - M. F. Hasler, Oct 08 2014

Examples

			Equals 2.178457567937599147372545702871245851807043301693254611347781924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[GoldenRatio^GoldenRatio,200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
  • PARI
    (t=(sqrt(5)+1)/2)^t \\ Use \p99 to get 99 digits; digits(%\.1^99) for the sequence of digits. - M. F. Hasler, Oct 08 2014
    
  • SageMath
    numerical_approx(golden_ratio^golden_ratio, digits=120) # G. C. Greubel, Jun 16 2022

Formula

Showing 1-2 of 2 results.