cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178394 Decimal expansion of e!.

Original entry on oeis.org

4, 2, 6, 0, 8, 2, 0, 4, 7, 6, 3, 5, 7, 0, 0, 3, 3, 8, 1, 7, 0, 0, 1, 2, 1, 2, 2, 4, 6, 4, 5, 7, 0, 2, 4, 6, 4, 9, 3, 3, 4, 2, 4, 3, 7, 3, 9, 5, 9, 3, 2, 1, 9, 7, 4, 9, 1, 1, 6, 0, 4, 8, 9, 3, 5, 9, 9, 3, 4, 4, 3, 4, 8, 7, 2, 7, 5, 0, 0, 0, 8, 5, 3, 4, 8, 8, 8, 7, 5, 3, 7, 0, 1, 5, 6, 9, 4, 7, 7, 2, 8, 9, 9, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Gamma(e+1).

Examples

			4.2608204763570033817001212246457024649334243739593219749116...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[E!,200]]

Formula

Equals Integral_{x>=0} x^e/e^x dx. - Alois P. Heinz, Aug 27 2015
Equals lim_{n->oo} n^2 * Integral_{x=n!^(1/n)..(n+1)!^(1/(n+1))} Gamma(n*x) dx (Bătinetu-Giurgiu, 2014). - Amiram Eldar, Mar 26 2022

A144713 Decimal expansion of phi/(phi^phi - 1), where phi is the golden ratio (1+sqrt(5))/2.

Original entry on oeis.org

1, 3, 7, 3, 0, 0, 9, 9, 6, 8, 9, 3, 8, 9, 6, 8, 0, 6, 0, 4, 3, 7, 0, 9, 2, 4, 4, 7, 2, 2, 5, 9, 5, 9, 8, 1, 3, 3, 5, 1, 6, 8, 2, 9, 6, 0, 0, 8, 1, 2, 0, 9, 9, 2, 6, 0, 6, 6, 6, 8, 2, 4, 4, 2, 9, 7, 6, 6, 3, 9, 4, 3, 9, 3, 2, 5, 5, 7, 6, 0, 9, 2, 1, 4, 8, 5, 0, 2, 8, 1, 8, 4, 4, 4, 4, 8, 9, 2, 0
Offset: 1

Views

Author

Daniel Akaiya (pi216n(AT)hotmail.com), Sep 19 2008

Keywords

Comments

Contains the golden ratio, the unit one and a tetration of the golden ratio.

Examples

			1.373009968938968060437092447225959813351682960081209926...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio/(GoldenRatio^GoldenRatio-1),10,120][[1]] (* Harvey P. Dale, Dec 16 2017 *)
  • SageMath
    numerical_approx(golden_ratio/(golden_ratio^golden_ratio - 1), digits=120) # G. C. Greubel, Jun 16 2022

Extensions

More terms from N. J. A. Sloane, Sep 19 2008

A092134 Continued fraction expansion for phi^phi, where phi is the golden ratio (1+sqrt(5))/2.

Original entry on oeis.org

2, 5, 1, 1, 1, 1, 10, 1, 1, 2, 8, 7643, 4, 1, 51, 2, 2, 8, 5, 2, 1, 6, 5, 4, 1, 42, 2, 1, 1, 1, 1, 1, 1, 1, 6, 2, 6, 2, 12, 2, 1, 6, 3, 13, 11, 2, 9, 2, 1, 4, 1, 2, 1, 6, 3, 1, 1, 1, 11, 3, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3, 1, 56, 1, 24, 6, 20, 3, 27, 2
Offset: 0

Views

Author

Ryan Witko (witko(AT)nyu.edu), Mar 30 2004

Keywords

Examples

			2.178457.. = 2 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...))))).
		

Crossrefs

Cf. A144749 (decimal expansion).

Programs

  • Maple
    with(numtheory):Digits:= 300: x:=(sqrt(5)+1)/2:convert(evalf(x^x), confrac); # Michel Lagneau
  • Mathematica
    phi := (1 + Sqrt[5])/2; ContinuedFraction[phi^phi, 80] (* Bruno Berselli, Aug 07 2013 *)
  • PARI
    gr = (1+sqrt(5))/2; contfrac(gr^gr) \\ Michel Marcus, Aug 07 2013

Extensions

a(12) and following terms corrected by Charles R Greathouse IV, Aug 07 2013
Offset changed by Andrew Howroyd, Aug 07 2024

A181779 Duplicate of A092134.

Original entry on oeis.org

2, 5, 1, 1, 1, 1, 10, 1, 1, 2, 8, 7643, 4, 1, 51, 2, 2, 8, 5, 2, 1, 6, 5, 4, 1, 42, 2, 1, 1, 1, 1, 1, 1, 1, 6, 2, 6, 2, 12, 2, 1, 6, 3, 13, 11, 2, 9, 2, 1, 4, 1, 2, 1, 6, 3, 1, 1, 1, 11, 3, 1, 2, 1, 1, 2, 3, 3, 1, 2, 3, 1, 56, 1, 24, 6, 20, 3, 27, 2, 1, 2, 1, 2, 5, 2, 1, 1, 14, 1, 91, 1, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 16, 21
Offset: 0

Views

Author

Keywords

Comments

Previous name was: Continued fraction for phi^phi.

Examples

			2.178457567937599147372545... = 2 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...))))).
		

References

  • H. Walser, The Golden Section, Math. Assoc. of Amer, Washington DC 2001.
  • C. J. Willard, Le nombre d'or, Magnard, Paris 1987.

Crossrefs

Cf. A144749 (decimal expansion).

Programs

  • Maple
    with(numtheory):Digits:= 300: x:=(sqrt(5)+1)/2:convert(evalf(x^x), confrac);
  • Mathematica
    ContinuedFraction[GoldenRatio^ GoldenRatio, 100 ]
  • PARI
    phi=(1+sqrt(5))/2;contfrac(phi^phi) \\ Charles R Greathouse IV, Jul 29 2011

Extensions

Offset changed and missing term inserted by Andrew Howroyd, Jul 08 2024
Showing 1-4 of 4 results.