cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062198 Sum of first n semiprimes.

Original entry on oeis.org

4, 10, 19, 29, 43, 58, 79, 101, 126, 152, 185, 219, 254, 292, 331, 377, 426, 477, 532, 589, 647, 709, 774, 843, 917, 994, 1076, 1161, 1247, 1334, 1425, 1518, 1612, 1707, 1813, 1924, 2039, 2157, 2276, 2397, 2519, 2642, 2771, 2904, 3038, 3179, 3321, 3464
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 24 2003

Keywords

Comments

Elements in this sequence can themselves be semiprimes. a(1) = 4 = 2^2. a(2) = 10 = 2 * 5. a(6) = 58 = 2 * 29. a(11) = 185 = 5 * 37. a(12) = 219 = 3 * 73. a(13) = 254 = 2 * 127. a(16) = 377 = 13 * 29. a(20) = 589 = 19 * 31. Etc. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004

Examples

			a(4) = 29 because the sum of the first 4 semiprimes 4+6+9+10 is 29.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[200],PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    is_A062198(N)={ my(n=0); while(N>0, while(bigomega(n++)!=2, ); N-=n); !N}  \\ - M. F. Hasler, Sep 23 2012
    
  • PARI
    A062198(n, list)={my(s=0, N=0); until(!n--, until(bigomega(N++)==2, ); s+=N; list & print1(s", ")); s}  \\ - M. F. Hasler, Sep 23 2012

Formula

a(n) = Sum_{i=1..n} A001358(i). - R. J. Mathar, Sep 14 2012

A092190 Semiprimes that are the sum of the first n semiprimes for some n.

Original entry on oeis.org

4, 10, 58, 185, 219, 254, 377, 589, 843, 917, 1247, 1707, 2157, 2519, 2642, 2771, 3755, 4227, 5078, 5633, 6433, 6638, 7053, 9031, 15469, 16109, 17414, 18763, 19109, 21281, 22421, 23591, 26827, 28093, 35489, 35978, 36471, 37469, 38987, 41578, 42634
Offset: 1

Views

Author

Zak Seidov, Feb 23 2004

Keywords

Examples

			10 is a term because the sum of the first two semiprimes 4 and 6 is 10.
		

Crossrefs

Corresponding values of n: A092189.

Programs

  • Mathematica
    s = Select[Range@ 40882, PrimeOmega@ # == 2 &]; Select[Accumulate[s[[1 ;; 164]]], PrimeOmega@ # == 2 &] (* Michael De Vlieger, Sep 21 2015 *)
  • PARI
    is_A092190(N)={bigomega(N)==2 & is_A062198(N)}  \\ M. F. Hasler, Sep 23 2012
    
  • PARI
    A092190(n,list=0,b=2)={my(s=0,N=0); while(n, until(bigomega(N++)==b,); bigomega(s+=N)==b & n-- & list & print1(s",")); s}  \\ M. F. Hasler, Sep 23 2012

Formula

Equals A062198 intersect A001358. - M. F. Hasler, Sep 23 2012

A213650 Numbers k such that the sum of the first k primes is semiprime.

Original entry on oeis.org

3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234
Offset: 1

Views

Author

Michel Lagneau, Jun 17 2012

Keywords

Comments

Numbers k such that A007504(k) is included in A001358.

Examples

			8 is in the sequence because the sum of the first 8 primes is  2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77 = 7*11, which is semiprime.
		

Crossrefs

Cf. A001358, A007504, A013916, A092189 (numbers n such that sum of first n semiprimes is a semiprime), A092190 (semiprimes that are the sum of first n semiprimes for some n), A180152 (numbers n such that the sum of the first n semiprimes is a prime).

Programs

  • Maple
    with(numtheory): for n from 1 to 500 do:s:=sum(‘ithprime(k)’, ’k’=1..n):if bigomega(s)=2 then printf(`%d, `, n):else fi:od:
  • Mathematica
    Flatten[Position[Accumulate[Prime[Range[300]]],_?(PrimeOmega[#]==2&)]]
  • PARI
    isok(n) = bigomega(vecsum(primes(n))) == 2; \\ Michel Marcus, Sep 18 2017

A265438 Smallest semiprime that is the sum of n consecutive semiprimes.

Original entry on oeis.org

4, 10, 25, 39, 69, 58, 133, 122, 249, 209, 185, 219, 254, 327, 458, 377, 473, 579, 745, 589, 951, 898, 1047, 843, 917, 1382, 1157, 1243, 1247, 1678, 1514, 1895, 1703, 1707, 2138, 2147, 2599, 2157, 2509, 2515, 2519, 2642, 2771, 3566, 4126, 3317, 3599, 3891, 4198, 3755, 4369, 4223, 4227
Offset: 1

Views

Author

Zak Seidov, Dec 09 2015

Keywords

Comments

The sequence is non-monotonic. But are all the terms distinct?
A092190 is a subsequence. More precisely, a(A092189(k)) = A092190(k). - Altug Alkan, Dec 13 2015

Examples

			a(1) = 4 = A001358(1),
a(2) = 10 = A001358(3) = A092192(1) = A001358(1)+A001358(2) = 4+6,
a(3) = 25 = A001358(9) = A131610(1),
a(4) = 39 = A001358(15) = A158339(1),
a(5) = 69 = A001358(24) = A254712(1),
a(6) = 58 = A001358(21) = A266451(1).
		

Crossrefs

Showing 1-4 of 4 results.