cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A323085 Semiprimes that are the sum of the first k terms of A092190 for some k.

Original entry on oeis.org

4, 14, 8567, 16499, 151211, 344891, 418831, 585197, 1049882, 1186582, 1671029, 2503966, 2989387, 4802311, 8291795, 9769711, 11420129, 13279957, 13677063, 15356513, 16258813, 24318863, 26874293, 39317497, 42862751
Offset: 1

Views

Author

Keywords

Comments

If we call the semiprime numbers A001358 level 1, and A092190 level 2, then this sequence is level 3.

Examples

			a(2) = 14 = Sum_{i=1..2} A092190(i).
a(3) = 8567 = Sum_{i=1..13} A092190(i).
		

Crossrefs

Programs

  • Mathematica
    f[w_] := Select[Most@ NestWhile[Append[#1, {#2, #2 + #1[[-1, -1]]}] & @@ {#, w[[Length@ # + 1]]} &, {{#, #}} &@ First[w], #[[-1, -1]] <= Max@ w &][[All, -1]], PrimeOmega@ # == 2 &]; Block[{s = Select[Range[10^6], PrimeOmega@ # == 2 &], t}, f@ f@ s] (* Michael De Vlieger, Jan 04 2019 *)

A062198 Sum of first n semiprimes.

Original entry on oeis.org

4, 10, 19, 29, 43, 58, 79, 101, 126, 152, 185, 219, 254, 292, 331, 377, 426, 477, 532, 589, 647, 709, 774, 843, 917, 994, 1076, 1161, 1247, 1334, 1425, 1518, 1612, 1707, 1813, 1924, 2039, 2157, 2276, 2397, 2519, 2642, 2771, 2904, 3038, 3179, 3321, 3464
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 24 2003

Keywords

Comments

Elements in this sequence can themselves be semiprimes. a(1) = 4 = 2^2. a(2) = 10 = 2 * 5. a(6) = 58 = 2 * 29. a(11) = 185 = 5 * 37. a(12) = 219 = 3 * 73. a(13) = 254 = 2 * 127. a(16) = 377 = 13 * 29. a(20) = 589 = 19 * 31. Etc. Does this happen infinitely often? - Jonathan Vos Post, Dec 11 2004

Examples

			a(4) = 29 because the sum of the first 4 semiprimes 4+6+9+10 is 29.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[200],PrimeOmega[#]==2&]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    is_A062198(N)={ my(n=0); while(N>0, while(bigomega(n++)!=2, ); N-=n); !N}  \\ - M. F. Hasler, Sep 23 2012
    
  • PARI
    A062198(n, list)={my(s=0, N=0); until(!n--, until(bigomega(N++)==2, ); s+=N; list & print1(s", ")); s}  \\ - M. F. Hasler, Sep 23 2012

Formula

a(n) = Sum_{i=1..n} A001358(i). - R. J. Mathar, Sep 14 2012

A092189 Numbers k such that the sum of the first k semiprimes is a semiprime.

Original entry on oeis.org

1, 2, 6, 11, 12, 13, 16, 20, 24, 25, 29, 34, 38, 41, 42, 43, 50, 53, 58, 61, 65, 66, 68, 77, 100, 102, 106, 110, 111, 117, 120, 123, 131, 134, 150, 151, 152, 154, 157, 162, 164, 165, 166, 174, 176, 178, 180, 183, 185, 187, 192, 205, 208, 210, 218, 221, 222, 231
Offset: 1

Views

Author

Zak Seidov, Feb 23 2004

Keywords

Examples

			2 is a term because the sum of the first two semiprimes, 4 and 6, is 10, which is a semiprime.
		

Crossrefs

Resulting semiprimes: A092190.

A213650 Numbers k such that the sum of the first k primes is semiprime.

Original entry on oeis.org

3, 7, 8, 10, 16, 18, 22, 28, 32, 34, 36, 38, 44, 46, 48, 54, 55, 58, 59, 65, 66, 72, 75, 82, 92, 93, 94, 104, 106, 110, 118, 120, 133, 136, 137, 138, 140, 141, 142, 144, 148, 150, 154, 156, 164, 168, 170, 174, 190, 194, 202, 210, 212, 218, 224, 226, 232, 234
Offset: 1

Views

Author

Michel Lagneau, Jun 17 2012

Keywords

Comments

Numbers k such that A007504(k) is included in A001358.

Examples

			8 is in the sequence because the sum of the first 8 primes is  2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 77 = 7*11, which is semiprime.
		

Crossrefs

Cf. A001358, A007504, A013916, A092189 (numbers n such that sum of first n semiprimes is a semiprime), A092190 (semiprimes that are the sum of first n semiprimes for some n), A180152 (numbers n such that the sum of the first n semiprimes is a prime).

Programs

  • Maple
    with(numtheory): for n from 1 to 500 do:s:=sum(‘ithprime(k)’, ’k’=1..n):if bigomega(s)=2 then printf(`%d, `, n):else fi:od:
  • Mathematica
    Flatten[Position[Accumulate[Prime[Range[300]]],_?(PrimeOmega[#]==2&)]]
  • PARI
    isok(n) = bigomega(vecsum(primes(n))) == 2; \\ Michel Marcus, Sep 18 2017

A217018 Partial sums of 3-almost primes which are again 3-almost primes, i.e., have exactly 3 not necessarily distinct prime factors.

Original entry on oeis.org

8, 20, 964, 1825, 2074, 2637, 3614, 3786, 4503, 5283, 5495, 6414, 6652, 7138, 7383, 9485, 9764, 10330, 10615, 11191, 12427, 12749, 13074, 15475, 16195, 16930, 18446, 19233, 20855, 22108, 22959, 23387, 28273, 28747, 29222, 30676, 32695, 34798, 35871
Offset: 1

Views

Author

M. F. Hasler, Sep 23 2012

Keywords

Comments

Bigomega=3 analog of the semiprime version A092190. In sequence A086062 it was asked whether there are infinitely many such numbers.

Programs

  • PARI
    A217018(n,list=0,N=0,S=0)={until(!n--,until(bigomega(S+=N)==3,until(bigomega(N++)==3,));list&print1(S","));S} \\ - M. F. Hasler, Sep 29 2012

Formula

A217018 = A086062 intersect A014612.

A265438 Smallest semiprime that is the sum of n consecutive semiprimes.

Original entry on oeis.org

4, 10, 25, 39, 69, 58, 133, 122, 249, 209, 185, 219, 254, 327, 458, 377, 473, 579, 745, 589, 951, 898, 1047, 843, 917, 1382, 1157, 1243, 1247, 1678, 1514, 1895, 1703, 1707, 2138, 2147, 2599, 2157, 2509, 2515, 2519, 2642, 2771, 3566, 4126, 3317, 3599, 3891, 4198, 3755, 4369, 4223, 4227
Offset: 1

Views

Author

Zak Seidov, Dec 09 2015

Keywords

Comments

The sequence is non-monotonic. But are all the terms distinct?
A092190 is a subsequence. More precisely, a(A092189(k)) = A092190(k). - Altug Alkan, Dec 13 2015

Examples

			a(1) = 4 = A001358(1),
a(2) = 10 = A001358(3) = A092192(1) = A001358(1)+A001358(2) = 4+6,
a(3) = 25 = A001358(9) = A131610(1),
a(4) = 39 = A001358(15) = A158339(1),
a(5) = 69 = A001358(24) = A254712(1),
a(6) = 58 = A001358(21) = A266451(1).
		

Crossrefs

A216686 Numbers n such that n appears in the partial sums of the m-almost primes, where m=bigomega(n).

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 17, 20, 32, 40, 41, 58, 64, 80, 128, 160, 185, 197, 219, 254, 256, 281, 320, 377, 512, 589, 640, 843, 917, 964, 1024, 1247, 1280, 1652, 1707, 1804, 1825, 2048, 2074, 2157, 2519, 2560, 2637, 2642, 2727, 2771, 3614, 3755, 3786, 4046, 4096, 4227
Offset: 1

Views

Author

Gerasimov Sergey, Sep 13 2012

Keywords

Comments

A013918 is a subsequence. - Zak Seidov, Sep 17 2012
Or: Numbers n equal to the sum of the first k numbers x having bigomega(x)=bigomega(n), for some k. - M. F. Hasler, Sep 23 2012

Examples

			2 is in the sequence because 2 appears in A007504.
4 is in the sequence because 4 appears in A062198.
5 is in the sequence because 5 appears in A007504.
6 is not in the sequence because 6 is not in A062198.
8 is in the sequence because 8 appears in A086062,
10 is in the sequence because 10 appears in A062198.
		

Crossrefs

Programs

  • Maple
    alm := proc(n,m) # n-th m-almost prime
        option remember;
        if n =1 then
            2^m ;
        else
            for a from procname(n-1,m)+1 do
                if numtheory[bigomega](a) = m then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    almP := proc(n,m) #n-th partial sum of the m-almost primes
        add(alm(i,m),i=1..n) ;
    end proc:
    isA216686 := proc(n) # is n in the sequence?
        local m ,k,ps;
        m := numtheory[bigomega](n) ;
        for k from 1 do
            ps := almP(k,m) ;
            if ps = n then
                return true;
            elif ps > n then
                return false;
            end  if;
        end do:
    end proc:
    for n from 1 to 4300 do
        if isA216686(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 14 2012
  • PARI
    is_A216686(n)={ my(m=bigomega(n),t); while(n>0, while(bigomega(t++)!=m,); n-=t); !n}  \\ - M. F. Hasler, Sep 23 2012

Extensions

Corrected by R. J. Mathar, Sep 14 2012
Showing 1-7 of 7 results.