cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067282 Numbers k such that phi(k) + phi(k+1) divides sigma(k) + sigma(k+1).

Original entry on oeis.org

1, 5, 52, 55, 185, 506, 551, 590, 644, 667, 707, 2285, 2587, 2758, 7551, 10366, 11336, 11564, 11798, 12750, 16616, 16703, 16764, 17383, 18239, 24350, 24415, 26586, 33263, 35541, 40382, 63248, 76247, 76622, 92379, 95069, 97341, 106312, 111388
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Comments

Presumably the ratio (sigma(n)+sigma(n+1))/(phi(n)+phi(n+1)) can be arbitrarily large. - Labos Elemer, Sep 17 2004
The first term for which the ratio is k for k = 2, 3, ... is 1, 5, 644, 6513584, ... - Amiram Eldar, Mar 02 2020

Crossrefs

Programs

  • Mathematica
    Select[Range[120000], Divisible[DivisorSigma[1, #] + DivisorSigma[1, # + 1], EulerPhi[#] + EulerPhi[# + 1]] &] (* Amiram Eldar, Mar 02 2020 *)
    Select[Partition[Table[{n,EulerPhi[n],DivisorSigma[1,n]},{n,111400}],2,1], Divisible[ #[[1,3]]+#[[2,3]],#[[1,2]]+#[[2,2]]]&][[All,1,1]] (* Harvey P. Dale, Apr 25 2020 *)

Extensions

More terms from Labos Elemer, Sep 17 2004

A197112 Numbers k such that phi(k) = phi(k+1) + phi(k+2).

Original entry on oeis.org

193, 3529, 9337, 27229, 46793, 78181, 90193, 112993, 135013, 437183, 849403, 935219, 1078579, 1283599, 1986973, 2209583, 2341183, 2411173, 2689693, 2744143, 3619069, 3712543, 4738183, 5132983, 6596119, 7829029, 8184713
Offset: 1

Views

Author

Antonio Roldán, Oct 10 2011

Keywords

Comments

For k less than 4*10^6, k is prime, semiprime, or triprime (3-almost prime).

Examples

			112993 is in the sequence, because phi(112993) = 106704, phi(112994) = 48384, phi(112995) = 58320  and 106704 = 48384 + 58320.
		

Crossrefs

Programs

Formula

a(n) = A066232(n)-2. - Donovan Johnson, Oct 14 2011

Extensions

a(27) from Vincenzo Librandi, Sep 27 2013

A229552 Numbers k such that phi(k) = phi(k+2) - phi(k+1).

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 35, 39, 45, 99, 135, 231, 255, 855, 1035, 1295, 1539, 1599, 2015, 4335, 6525, 9177, 14399, 16095, 30495, 55385, 61131, 62799, 65535, 72579, 77615, 110175, 152649, 179295, 244965, 299649, 603459, 619695, 686735, 1876725, 2841915, 3058209
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2013

Keywords

Crossrefs

Programs

Formula

a(n) = A065557(n) - 2. - Amiram Eldar, Dec 09 2022

A067796 Numbers k such that phi(k) + phi(k+1) = k.

Original entry on oeis.org

14, 20, 44, 140, 254, 272, 284, 344, 464, 764, 1224, 1424, 2064, 3200, 3824, 11648, 21584, 25520, 27644, 38840, 116544, 235584, 603584, 632400, 1677024, 1935344, 2049984, 3763184, 18460224, 74649584, 82448384, 86648000, 97507584, 363939824, 646139264, 4294967294
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], EulerPhi[#] + EulerPhi[# + 1] == # &] (* Amiram Eldar, Apr 23 2022 *)

Extensions

a(22)-a(33) from Donovan Johnson, Mar 24 2011
a(34)-a(36) from Amiram Eldar, Apr 23 2022

A067797 Numbers k such that phi(k) + phi(k+1) = k+2.

Original entry on oeis.org

4, 6, 8, 50, 74, 110, 170, 174, 890, 902, 1310, 1434, 1826, 2714, 4190, 5030, 6494, 8234, 8474, 10142, 14390, 31670, 32394, 40514, 89990, 95174, 101834, 102554, 135374, 151754, 173942, 206054, 248394, 259694, 288266, 330614, 516242, 650654, 780554, 913994, 941714
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6],EulerPhi[#]+EulerPhi[#+1]==#+2&] (* Harvey P. Dale, Apr 04 2019 *)
  • PARI
    isok(n) = eulerphi(n) + eulerphi(n+1) == n+2; \\ Michel Marcus, Nov 23 2013

Extensions

More terms from Michel Marcus, Nov 23 2013

A067799 Numbers k such that phi(k) + phi(k+1) = sigma(k).

Original entry on oeis.org

2, 3, 5, 115, 143, 287, 371, 413, 623, 791, 4067, 10031, 24149, 32335, 39689, 88403, 93443, 107365, 148735, 168833, 212993, 427763, 555947, 650095, 925253, 1017821, 1117457, 1139467, 1229327, 1270801, 1407295, 2184221, 2294509, 2913757, 3258355, 4699981, 5747291
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], EulerPhi[#] + EulerPhi[# + 1] == DivisorSigma[1, #] &] (* Amiram Eldar, May 21 2022 *)

Extensions

More terms from Dean Hickerson, Feb 16 2002
More terms from Amiram Eldar, May 21 2022

A076647 Numbers n such that phi(n) + phi(n+1) = sigma(n)/2.

Original entry on oeis.org

56, 456, 476, 828, 846, 1196, 2060, 2780, 4484, 7530, 9174, 11420, 11475, 11865, 13454, 22154, 34916, 35385, 52185, 67308, 105798, 140895, 168872, 190840, 219852, 241892, 244074, 267225, 303834, 317564, 330484, 335440, 460292, 580970, 658515
Offset: 1

Views

Author

Joseph L. Pe, Oct 23 2002

Keywords

Examples

			phi(56) + phi(57) = 24 + 36 = 60 = 1/2 sigma(56), so 56 is a term of the sequence.
		

Crossrefs

Cf. A092404.

Programs

  • Maple
    with(numtheory): p:=proc(n) if phi(n)+phi(n+1)=sigma(n)/2 then n else fi end: seq(p(n),n=1..2500000); # Emeric Deutsch, Sep 02 2005
  • Mathematica
    Select[Range[10^5], EulerPhi[ # ] + EulerPhi[ # + 1] == (1/2)DivisorSigma[1, # ] &]
  • PARI
    isok(n) = eulerphi(n) + eulerphi(n+1) == sigma(n)/2; \\ Michel Marcus, Aug 15 2019

Extensions

More terms from Emeric Deutsch, Sep 02 2005

A362334 a(n) = A000010(n) + A000010(n+2), where A000010 is the Euler phi-function.

Original entry on oeis.org

3, 3, 6, 4, 10, 6, 12, 8, 16, 8, 22, 10, 20, 14, 24, 14, 34, 14, 30, 18, 34, 18, 42, 20, 38, 24, 46, 20, 58, 24, 50, 32, 44, 28, 60, 30, 60, 34, 64, 28, 82, 32, 66, 42, 70, 38, 88, 36, 74, 44, 84, 42, 92, 42, 76, 52, 94, 44, 118, 46, 96, 62, 84, 52, 114, 52, 110
Offset: 1

Views

Author

Alexandre Herrera, Apr 16 2023

Keywords

Comments

Conjecture: a(2*n) <= a(2*n-1) and a(2*n) < a(2*n+1).

Examples

			For n = 3, phi(3) = 2 and phi(5) = 4, so a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ EulerPhi[n + {0, 2}]; Array[a, 100] (* Amiram Eldar, Apr 18 2023 *)
  • PARI
    a(n) = eulerphi(n) + eulerphi(n+2); \\ Michel Marcus, Apr 17 2023

Formula

a(n) = phi(n) + phi(n+2).
Showing 1-8 of 8 results.