cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A165724 Digit sums of A092571.

Original entry on oeis.org

7, 13, 19, 55, 103, 121, 127, 163, 253, 391, 721, 793, 1063, 1441, 2719, 3313, 9595, 13045, 17863, 21889, 46243, 49891
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 25 2009

Keywords

Comments

Primes in this sequence are 7, 13, 19, 103, 127,163, ....

Examples

			The digit sum of 6666666666666666666666666666666666666666661 is 253.
		

Crossrefs

Formula

a(n) = 1 + 6*A056658(n). [R. J. Mathar, Sep 25 2009]
a(n) = A007953(A092571(n)). - Michel Marcus, Jul 07 2023

Extensions

More terms from R. J. Mathar, Sep 25 2009

A056658 Numbers k such that 60*R_k + 1 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 2, 3, 9, 17, 20, 21, 27, 42, 65, 120, 132, 177, 240, 453, 552, 1599, 2174, 2977, 3648, 7707, 8315, 10391, 12457, 21056, 26222, 48296, 64040, 84903, 92975, 95071
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2000

Keywords

Comments

Also numbers k such that (2*10^(k+1)-17)/3 is prime.

Crossrefs

Cf. A002275, A092571 (corresponding primes), A098088.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 60*(10^n - 1)/9 + 1], Print[n]], {n, 7000}]

Formula

a(n) = A098088(n) - 1. - Robert Price, Aug 19 2014

Extensions

1599 and 2174 (corresponding to probable primes) from Rick L. Shepherd, Feb 28 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(23)-a(31) derived from A098088 by Robert Price, Aug 19 2014

A092675 Primes of the form 80*R_k + 1, where R_k is the repunit (A002275) of length k.

Original entry on oeis.org

881, 8888888888888888881, 8888888888888888888888888888888888888888888888888888888888888888888888888888881
Offset: 1

Views

Author

Rick L. Shepherd, Mar 02 2004

Keywords

Comments

Primes of the form 888...881.
The number of 8's in each term is given by the corresponding term of A056664 and so the first term too large to include above is 888...8881 (with 138 8's).
Primes of the form (8*10^k - 71)/9. - Vincenzo Librandi, Nov 16 2010

Crossrefs

Cf. A056664 (corresponding k).

Programs

  • Mathematica
    Select[Table[10 FromDigits[PadRight[{},n,8]]+1,{n,150}],PrimeQ] (* Harvey P. Dale, Aug 07 2019 *)

A173805 a(n) = (6*10^n - 51)/9 for n > 0.

Original entry on oeis.org

1, 61, 661, 6661, 66661, 666661, 6666661, 66666661, 666666661, 6666666661, 66666666661, 666666666661, 6666666666661, 66666666666661, 666666666666661, 6666666666666661, 66666666666666661, 666666666666666661, 6666666666666666661, 66666666666666666661, 666666666666666666661
Offset: 1

Views

Author

Vincenzo Librandi, Feb 25 2010

Keywords

Crossrefs

Cf. A092571.

Programs

  • Magma
    [(6*10^n-51)/9: n in [1..20]]; // Vincenzo Librandi, Jul 05 2012
  • Mathematica
    CoefficientList[Series[(1+50*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* Vincenzo Librandi, Jul 05 2012 *)

Formula

a(n) = 10*a(n-1) + 51 with n > 0, a(0)=-5.
From Vincenzo Librandi, Jul 05 2012: (Start)
G.f.: x*(1+50*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)
E.g.f.: 5 + exp(x)*(6*exp(9*x) - 51)/9. - Elmo R. Oliveira, Sep 09 2024

A109548 Primes of the form aaaa...aa1 where a is 1, 2, 3, 4 or 5.

Original entry on oeis.org

11, 31, 41, 331, 2221, 3331, 4441, 33331, 333331, 3333331, 33333331, 44444444441, 555555555551, 5555555555551, 222222222222222221, 333333333333333331, 1111111111111111111, 11111111111111111111111
Offset: 1

Views

Author

Roger L. Bagula, Jun 26 2005

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] = Mod[n, 6] a = Flatten[Table[Sum[d[k]*10^i, {i, 1, m}] + 1, {m, 1, 50}, {k, 1, 5}]] b = Flatten[Table[If[PrimeQ[a[[i]]] == True, a[[i]], {}], {i, 1, Length[a]}]]
    Select[FromDigits/@Flatten[Table[PadLeft[{1},i,#]&/@{1,2,3,4,5},{i,2,80}],1],PrimeQ[#]&] (* Vincenzo Librandi, Dec 12 2011 *)

Formula

d=1, 2, 3, 4, 5 a(n) = if prime then Sum[d*10^i, {i, 1, m}] + 1

A109549 Primes of the form aaaa...aa1 where a is 6, 7, 8 or 9.

Original entry on oeis.org

61, 71, 661, 881, 991, 6661, 99991, 9999991, 6666666661, 7777777777771, 666666666666666661, 8888888888888888881, 77777777777777777771, 666666666666666666661, 6666666666666666666661, 77777777777777777777771
Offset: 1

Views

Author

Roger L. Bagula, Jun 26 2005

Keywords

Comments

Easy-to-remember large primes can be formed in this manner.

Crossrefs

Programs

  • Mathematica
    d[n_] = If[5 + Mod[n, 6] > 0, 5 + Mod[n, 6], 1] a = Flatten[Table[Sum[d[k]*10^i, {i, 1, m}] + 1, {m, 1, 50}, {k, 1, 4}]] b = Flatten[Table[If[PrimeQ[a[[i]]] == True, a[[i]], {}], {i, 1, Length[a]}]]
    Select[FromDigits/@Flatten[Table[PadLeft[{1},i,#]&/@{6,7,8,9},{i,2,100}],1],PrimeQ[#]&] (* Vincenzo Librandi, Dec 12 2011 *)

Formula

d=6, 7, 8, 9 a(n) = if prime then Sum[d*10^i, {i, 1, m}] + 1

A109550 Primes of the form aaaa...aa1 where a is 3, 4, 5, 6 or 7.

Original entry on oeis.org

31, 41, 61, 71, 331, 661, 3331, 4441, 6661, 33331, 333331, 3333331, 33333331, 6666666661, 44444444441, 555555555551, 5555555555551, 7777777777771, 333333333333333331, 666666666666666661, 77777777777777777771
Offset: 1

Views

Author

Roger L. Bagula, Jun 26 2005

Keywords

Crossrefs

Programs

  • Mathematica
    d[n_] = If[2 + Mod[n, 6] > 0, 2 + Mod[n, 6], 1] a = Flatten[Table[Sum[d[k]*10^i, {i, 1, m}] + 1, {m, 1, 50}, {k, 1, 4}]] b = Flatten[Table[If[PrimeQ[a[[i]]] == True, a[[i]], {}], {i, 1, Length[a]}]]
    Select[FromDigits/@Flatten[Table[PadLeft[{1},i,#]&/@{3,4, 5,6,7},{i,2,100}],1],PrimeQ[#]&] (* Vincenzo Librandi, Dec 12 2011 *)

Formula

d=3, 4, 5, 6, 7 a(n) = if prime then Sum[d*10^i, {i, 1, m}] + 1

A160452 Invertible primes of the form 1 followed by a string of 9's.

Original entry on oeis.org

19, 199, 1999, 1999999999999999999999999999
Offset: 1

Views

Author

Lekraj Beedassy, May 14 2009

Keywords

Comments

These are values in A055558 whose rotation by 180 degrees occurs in A092571. I have checked all the numbers that correspond to entries in A002957 and can confirm that the next term in this sequence, if it exists, is greater than 2*10^55347-1. [From Dmitry Kamenetsky, May 22 2009]

Examples

			1999, for instance, is a prime which rotated upside down through 180 degrees becomes the prime 6661. Hence 1999 is in the sequence.
		

Crossrefs

Cf. A092571, A002957. [From Dmitry Kamenetsky, May 22 2009]
Showing 1-8 of 8 results.