1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 6, 5, 5, 3, 6, 11, 10, 8, 9, 6, 11, 21, 18, 17, 15, 17, 11, 21, 39, 35, 32, 32, 28, 32, 21, 39, 74, 67, 64, 60, 60, 53, 60, 39, 74, 141, 131, 124, 120, 113, 113, 99, 113, 74, 141, 272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272, 527, 499
Offset: 0
Rows begin:
1;
1, 1;
2, 1, 2;
3, 3, 2, 3;
6, 5, 5, 3, 6;
11, 10, 8, 9, 6, 11;
21, 18, 17, 15, 17, 11, 21;
39, 35, 32, 32, 28, 32, 21, 39;
74, 67, 64, 60, 60, 53, 60, 39, 74;
141, 131, 124, 120, 113, 113, 99, 113, 74, 141;
272, 255, 244, 233, 226, 212, 212, 187, 215, 141, 272;
527, 499, 477, 459, 438, 424, 399, 402, 356, 413, 272, 527;
1026, 976, 936, 897, 862, 823, 801, 758, 769, 685, 799, 527, 1026; ...
The convolution of each row with {1,1} gives the triangle:
1, 1;
1, 2, 1;
2, 3, 3, 2;
3, 6, 5, 5, 3;
6, 11, 10, 8, 9, 6;
11, 21, 18, 17, 15, 17, 11;
21, 39, 35, 32, 32, 28, 32, 21;
39, 74, 67, 64, 60, 60, 53, 60, 39; ...
which, when flattened, equals the original triangle in flattened form.
A092686
Triangle, read by rows, such that the convolution of each row with {1,2} produces a triangle which, when flattened, equals this flattened form of the original triangle.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 16, 14, 12, 16, 46, 40, 40, 32, 46, 132, 120, 112, 110, 92, 132, 384, 352, 334, 312, 316, 264, 384, 1120, 1038, 980, 940, 896, 912, 768, 1120, 3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278, 9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758
Offset: 0
Rows begin:
1;
2, 2;
6, 4, 6;
16, 14, 12, 16;
46, 40, 40, 32, 46;
132, 120, 112, 110, 92, 132;
384, 352, 334, 312, 316, 264, 384;
1120, 1038, 980, 940, 896, 912, 768, 1120;
3278, 3056, 2900, 2776, 2704, 2592, 2656, 2240, 3278;
9612, 9012, 8576, 8256, 8000, 7840, 7552, 7758, 6556, 9612;
28236, 26600, 25408, 24512, 23840, 23232, 22862, 22072, 22724, 19224, 28236; ...
Convolution of each row with {1,2} results in the triangle:
1, 2;
2, 6, 4;
6, 16, 14, 12;
16, 46, 40, 40, 32;
46, 132, 120, 112, 110, 92;
132, 384, 352, 334, 312, 316, 264;
384, 1120, 1038, 980, 940, 896, 912, 768; ...
which, when flattened, equals the original triangle in flattened form.
-
T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
-
/* Generate Triangle by the G.F.: */
{T(n,k)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),k,y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Jul 17 2006
A092684
First column and main diagonal of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
Original entry on oeis.org
1, 1, 2, 3, 6, 11, 21, 39, 74, 141, 272, 527, 1026, 2002, 3914, 7659, 14996, 29369, 57531, 112727, 220963, 433342, 850386, 1670011, 3282259, 6456475, 12711413, 25047465, 49396116, 97490480, 192552549, 380565123, 752619506, 1489234257
Offset: 0
a(8) = Sum_{k=0..[8/2]} C(n-k,k)*a(k)
= C(8,0)*a(0) +C(7,1)*a(1) +C(6,2)*a(2) +C(5,3)*a(3) +C(4,4)*a(4)
= 1*1 + 7*1 + 15*2 + 10*3 + 1*6 = 74.
-
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1)))))}
a(n)=T(n,0)
-
a(n)=if(n==0,1,sum(k=0,n\2,binomial(n-k,k)*a(k))) \\ Paul D. Hanna, May 03 2006
-
{a(n)=local(A=1+x);for(i=0,n\2,A=subst(A,x,x^2/(1-x+x*O(x^n)))/(1-x));polcoeff(A,n)} \\ Paul D. Hanna, Jul 10 2006
A092687
First column and main diagonal of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.
Original entry on oeis.org
1, 2, 6, 16, 46, 132, 384, 1120, 3278, 9612, 28236, 83072, 244752, 722048, 2132704, 6306304, 18666190, 55300732, 163968612, 486528288, 1444571068, 4291629384, 12756459936, 37934818112, 112855778768, 335867740704, 999895548736
Offset: 0
-
m = 27; A[] = 1; Do[A[x] = A[x^2/(1-2x)]/(1-2x) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
-
T(n,k)=if(n<0||k>n,0, if(n==0&k==0,1, if(n==1&k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))
a(n)=T(n,0)
for(n=0,30,print1(a(n),", "))
-
a(n)=local(A=1+x);for(i=0,n\2,A=subst(A,x,x^2/(1-2*x+x*O(x^n)))/(1-2*x));polcoeff(A,n) \\ Paul D. Hanna, Jul 10 2006
-
/* Using Recurrence: */
a(n)=if(n==0, 1, sum(k=0, n\2, binomial(n-k, k)*2^(n-2*k)*a(k)))
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Jul 10 2006
A092685
Row sums of triangle A092683, in which the convolution of each row with {1,1} produces a triangle that, when flattened, equals the flattened form of A092683.
Original entry on oeis.org
1, 2, 5, 11, 25, 55, 120, 258, 551, 1169, 2469, 5193, 10885, 22746, 47404, 98553, 204443, 423259, 874680, 1804556, 3717348, 7647075, 15711194, 32242013, 66096274, 135366764, 276988466, 566312984, 1156974619, 2362043602
Offset: 0
-
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,1, if(k==n,T(n,0), T(n-1,k)+T(n-1,k+1)))))}
a(n)=sum(k=0,n,T(n,k))
-
{a(n)=local(A,F=1+x,d=1,G=x,H=1+x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,2*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006
A092688
Row sums of triangle A092686, in which the convolution of each row with {1,2} produces a triangle that, when flattened, equals the flattened form of A092686.
Original entry on oeis.org
1, 4, 16, 58, 204, 698, 2346, 7774, 25480, 82774, 266946, 855674, 2728702, 8663402, 27400862, 86376186, 271488444, 851099874, 2661967502, 8308462182, 25883429326, 80497346294, 249956869434, 775048966478, 2400067860090
Offset: 0
-
{T(n,k)=if(n<0 || k>n,0, if(n==0 && k==0,1, if(n==1 && k<=1,2, if(k==n,T(n,0), 2*T(n-1,k)+T(n-1,k+1)))))}
a(n)=sum(k=0,n,T(n,k))
-
{a(n)=local(A,F=1+2*x,d=1,G=x,H=1+2*x,S=ceil(log(n+1)/log(d+1))); for(i=0,n,G=x*subst(F,x,G+x*O(x^n)));for(i=0,S,H=subst(H,x,x*G^d+x*O(x^n))*G/x); A=(x*H-y*subst(H,x,x*y^d +x*O(x^n)))/(x*subst(F,x,y)-y); sum(k=0,d*n,polcoeff(polcoeff(A,n,x),k,y))} \\ Paul D. Hanna, Jul 17 2006
Showing 1-7 of 7 results.
Comments