A097717
a(n) = least number m such that the quotient m/n is obtained merely by shifting the leftmost digit of m to the right end.
Original entry on oeis.org
1, 105263157894736842, 1034482758620689655172413793, 102564, 714285, 1016949152542372881355932203389830508474576271186440677966, 1014492753623188405797, 1012658227848, 10112359550561797752808988764044943820224719
Offset: 1
We have a(5)=714285 since 714285/5=142857.
Likewise, a(4)=102564 since this is the smallest number followed by 205128, 307692, 410256, 512820, 615384, 717948, 820512, 923076, ... which all get divided by 4 when the first digit is made last.
- R. Sprague, Recreation in Mathematics, Problem 21 pp. 17; 47-8 Dover NY 1963.
A097717: when move L digit to R, divides by n (infinite)
A094676: when move L digit to R, divides by n, no. of digits is unchanged (finite)
A092697: when move R digit to L, multiplies by n (finite)
A128857 is the same sequence as
A097717 except that m must begin with 1.
-
Min[Table[Block[{d=Ceiling[Log[10,n]],m=(10n-1)/GCD[10n-1,a]}, If[m!=1, While[PowerMod[10,d,m]!=n,d++ ],d=1]; ((10^(d+1)-1) a n)/(10n-1)], {a,9}]] (* Anton V. Chupin (chupin(X)icmm.ru), Apr 12 2007 *)
a(9) from Anton V. Chupin (chupin(X)icmm.ru), Apr 12 2007
A034089
Numbers that are proper divisors of the number you get by rotating digits right once.
Original entry on oeis.org
102564, 128205, 142857, 153846, 179487, 205128, 230769, 102564102564, 128205128205, 142857142857, 153846153846, 179487179487, 205128205128, 230769230769, 1012658227848, 1139240506329, 102564102564102564
Offset: 1
-
period(p,q,S=[])=until(setsearch(S,p),S=setunion(S,[p]);p=10*p%q);S=[];until(p==S[1],S=concat(S,p);p=10*p%q);S*10\q /* print list of periods, right-rotated and ratio */ rotquo(n,d)={d=divrem(n,10);d[1]+=d[2]*10^#Str(d[1]);[n,d[1],d[1]/n]} for(k=2,9,for(i=k,9,print1( i/(10*k-1),"\t",rotquo(sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))) /* build the sequence up to the greatest period */ A034089()={local(S=[],p); for(k=2,9,for(i=k,9,S=concat(S,sum(j=1,#p=period(i,k*10-1),p[j]*10^(#p-j))))); S=vecsort(S); for(i=1,#S, for(c=2,58\p=#Str(S[i]), S=concat(S,S[i]*(10^(c*p)-1)/(10^p-1)) )); vecsort(S)} \\ M. F. Hasler, Nov 18 2007
A146088
Numbers k with the property that shifting the rightmost digit of k to the left end doubles the number.
Original entry on oeis.org
0, 105263157894736842, 157894736842105263, 210526315789473684, 263157894736842105, 315789473684210526, 368421052631578947, 421052631578947368, 473684210526315789, 105263157894736842105263157894736842, 157894736842105263157894736842105263
Offset: 0
N. J. A. Sloane, based on correspondence from William A. Hoffman III (whoff(AT)robill.com), Apr 10 2009
The sequence starts with a(0)=0 because rotating a lone 0 does double 0. That initial trivial term was not given an index of 1 when it was added, so that the index of other terms of A146088 would not change and invalidate delicate prior cross-references within OEIS (e.g., A217592) or outside of it.
a(4) = 263157894736842105 because 2*a(4) = 526315789473684210.
Subsequence of
A034089 (except for the initial 0).
-
a[n_] := (m = Mod[n - 1, 8] + 2; d = Floor[(n + 7)/8]*18 - 1; ((10/19)*(10^d - 2) + 1)*m); Table[a[n], {n, 0, 10}] (* Jean-François Alcover, Jan 16 2013, after M. F. Hasler *)
-
A146088(n) = ((10^((n+7)\8*18-1)-2)/19*10+1)*((n-1)%8+2)
/* or a more experimental approach: */ for(d=1,99, Mod(10,19)^k-2 & next; for(m=2,9, print1(",",m*(10^k-2)/19,m))) \\\\ M. F. Hasler, May 04 2009
A146561
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 3.
Original entry on oeis.org
1034482758620689655172413793, 1379310344827586206896551724, 1724137931034482758620689655, 2068965517241379310344827586, 2413793103448275862068965517, 2758620689655172413793103448, 3103448275862068965517241379, 10344827586206896551724137931034482758620689655172413793
Offset: 1
N. J. A. Sloane, based on correspondence from William A. Hoffman III (whoff(AT)robill.com), Apr 10 2009
All these are subsequences of
A034089.
A146754
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 5.
Original entry on oeis.org
142857, 142857142857, 142857142857142857, 142857142857142857142857, 142857142857142857142857142857, 142857142857142857142857142857142857, 102040816326530612244897959183673469387755, 122448979591836734693877551020408163265306, 142857142857142857142857142857142857142857
Offset: 1
N. J. A. Sloane, based on correspondence from William A. Hoffman III (whoff(AT)robill.com), Apr 10 2009
From _Seiichi Manyama_, Aug 22 2017: (Start)
a(1) = b1*10 + 7 with b1 = 14285, and 5*a(1) = 714285 = 7*10^5 + b1.
a(7) = b7*10 + 5 with b7 = 10204081632653061224489795918367346938775, and
5*a(7) = 510204081632653061224489795918367346938775 = 5*10^41 + b7. (End)
All these are subsequences of
A034089 (except for an initial 0 in some of them).
-
f:= proc(d) # solutions with d+1 digits
local b,R,a;
R:= NULL;
for b from ceil(49*10^(d-1)/(10^d - 1)) to 9 do
a:= (10^d-5)*b/49;
if a::integer then R:= R, 10*a+b fi
od;
R
end proc:
map(f, [$1..42]); # Robert Israel, Nov 05 2024
A146569
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 4.
Original entry on oeis.org
0, 102564, 128205, 153846, 179487, 205128, 230769, 102564102564, 128205128205, 153846153846, 179487179487, 205128205128, 230769230769, 102564102564102564, 128205128205128205, 153846153846153846, 179487179487179487
Offset: 0
N. J. A. Sloane, based on correspondence from William A. Hoffman III (whoff(AT)robill.com), Apr 10 2009
All these are subsequences of
A034089 (except for an initial 0 in some of these).
A291215
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 7.
Original entry on oeis.org
1014492753623188405797, 1159420289855072463768, 1304347826086956521739, 10144927536231884057971014492753623188405797, 11594202898550724637681159420289855072463768, 13043478260869565217391304347826086956521739, 101449275362318840579710144927536231884057971014492753623188405797
Offset: 1
b = 101449275362318840579.
a(1) = b*10 + 7,
7*a(1) = 7101449275362318840579 = 7*10^21 + b.
All these are subsequences of
A034089 (except for an initial 0 in some of them).
A291321
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 8.
Original entry on oeis.org
1012658227848, 1139240506329, 10126582278481012658227848, 11392405063291139240506329, 101265822784810126582278481012658227848, 113924050632911392405063291139240506329, 1012658227848101265822784810126582278481012658227848
Offset: 1
a(1) = b*10 + 8 with b = 101265822784, and 8*a(1) = 8101265822784 = 8*10^12 + b.
All these are subsequences of
A034089 (except for an initial 0 in some of them).
A291353
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 9.
Original entry on oeis.org
10112359550561797752808988764044943820224719, 1011235955056179775280898876404494382022471910112359550561797752808988764044943820224719
Offset: 1
All these are subsequences of
A034089 (except for an initial 0 in some of them).
A291354
Numbers m with the property that shifting the rightmost digit of m to the left end multiplies the number by 6.
Original entry on oeis.org
1016949152542372881355932203389830508474576271186440677966, 1186440677966101694915254237288135593220338983050847457627, 1355932203389830508474576271186440677966101694915254237288
Offset: 1
All these are subsequences of
A034089 (except for an initial 0 in some of them).
Showing 1-10 of 15 results.
Comments