cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A009775 Exponential generating function is tanh(log(1+x)).

Original entry on oeis.org

0, 1, -1, 0, 6, -30, 90, 0, -2520, 22680, -113400, 0, 7484400, -97297200, 681080400, 0, -81729648000, 1389404016000, -12504636144000, 0, 2375880867360000, -49893498214560000, 548828480360160000, 0, -151476660579404160000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(0) = 0, a(4n+3) = 0, a(n) = (-1)^[n == 2, 5, 8 mod 8] * n!/2^floor(n/2). - Ralf Stephan, Mar 06 2004
From Peter Bala, Nov 25 2011: (Start)
(1): a(n) = i*n!/2^(n+1)*{(i-1)^(n+1)-(-1-i)^(n+1)} for n>=1.
The function tanh(log(1+x)) is a disguised form of the rational function (x^2+2*x)/(x^2+2*x+2). Observe that
(2): (x^2+2*x)/(x^2+2*x+2) = d/dx[x - atan((x^2+2*x)/(2*x+2))].
Hence, with an offset of 1, the egf for this sequence is
(3): x - atan((x^2+2*x)/(2*x+2)) = x^2/2! - x^3/3! + 6*x^5/5!- 30*x^6/6! + 90*x^7/7! - ....
This sequence is closely related to the series reversion of the function E(x)-1, where E(x) = sec(x)+tan(x) is the egf for the sequence of zigzag numbers A000111. Under the change of variable x -> sec(x)+tan(x)-1 the rational function (x^2+2*x)/(2*x+2) transforms to tan(x). Hence atan((x^2+2*x)/(2*x+2)) is the inverse function of sec(x)+tan(x)-1.
Recurrence relation:
(4): 2*a(n)+2*n*a(n-1)+n*(n-1)*a(n-2) = 0 with a(1) = 1, a(2) = -1.
(End)

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997

A007415 Expand sin x / exp x = x-x^2+x^3/3-x^5/30+... and invert nonzero coefficients.

Original entry on oeis.org

0, 1, -1, 3, 0, -30, 90, -630, 0, 22680, -113400, 1247400, 0, -97297200, 681080400, -10216206000, 0, 1389404016000, -12504636144000, 237588086736000, 0, -49893498214560000, 548828480360160000, -12623055048283680000, 0, 3786916514485104000000
Offset: 0

Views

Author

Keywords

Crossrefs

Absolute values are essentially the same as A046979, where zeros are replaced by ones.
a(4n+2) = -(-1)^n*A052277(n), a(2n+1) = (-1)^[n/2]*A007019(n).

Programs

  • Maple
    a:= n-> (p-> `if`(p=0,0,1/p))(coeff(series(sin(x)/exp(x), x, n+1), x, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    1/CoefficientList[Sin[x]/Exp[x] + O[x]^26, x] /. ComplexInfinity -> 0 // Quiet (* Jean-François Alcover, Feb 26 2019 *)

Formula

a(n) = [n mod 4 > 0] * (-1)^(n+1+[n/4]) * n!/2^[n/2]. - Ralf Stephan, Mar 06 2004
E.g.f.: sin(x)/exp(x) = x-x^2/(G(0)+x); G(k)=2k+1-x+x*(2k+1)/(4k+3-x+x^2*(4k+3)/( (2k+2)*(4k+5)-x^2+x*(2k+2)*(4k+5)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011

A046979 Denominators of Taylor series for exp(x)*sin(x).

Original entry on oeis.org

1, 1, 1, 3, 1, 30, 90, 630, 1, 22680, 113400, 1247400, 1, 97297200, 681080400, 10216206000, 1, 1389404016000, 12504636144000, 237588086736000, 1, 49893498214560000, 548828480360160000, 12623055048283680000, 1, 3786916514485104000000, 49229914688306352000000
Offset: 0

Views

Author

Keywords

Examples

			1*x + 1*x^2 + 1/3*x^3 - 1/30*x^5 - 1/90*x^6 - 1/630*x^7 + 1/22680*x^9 + 1/113400*x^10 + ...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Essentially the same as absolute values of A007415.

Programs

  • Maple
    a:= n-> denom(coeff(series(sin(x)/exp(x), x, n+1), x, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    Denominator[CoefficientList[Series[Exp[x]Sin[x],{x,0,30}],x] ] (* Harvey P. Dale, Feb 14 2015 *)
  • PARI
    a(n) = if (n % 4, n!/2^floor(n/2), 1); \\ Michel Marcus, Oct 12 2015

Formula

a(4n) = 1, a(n) = n!/2^floor(n/2).

A046981 Denominators of Taylor series for exp(x)*cos(x).

Original entry on oeis.org

1, 1, 1, 3, 6, 30, 1, 630, 2520, 22680, 1, 1247400, 7484400, 97297200, 1, 10216206000, 81729648000, 1389404016000, 1, 237588086736000, 2375880867360000, 49893498214560000, 1, 12623055048283680000, 151476660579404160000, 3786916514485104000000
Offset: 0

Views

Author

Keywords

Examples

			1+1*x-1/3*x^3-1/6*x^4-1/30*x^5+1/630*x^7+1/2520*x^8+1/22680*x^9-...
		

References

  • G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.

Crossrefs

Absolute values are essentially the same as A007452.

Programs

  • Mathematica
    Denominator/@CoefficientList[Series[Exp[x]Cos[x],{x,0,30}],x] (* Harvey P. Dale, Jun 28 2011 *)

Formula

a(4n+2) = 1, a(n) = n!/2^[n/2].

A007452 Expand cos x / exp x and invert nonzero coefficients.

Original entry on oeis.org

1, -1, 0, 3, -6, 30, 0, -630, 2520, -22680, 0, 1247400, -7484400, 97297200, 0, -10216206000, 81729648000, -1389404016000, 0, 237588086736000, -2375880867360000, 49893498214560000, 0, -12623055048283680000
Offset: 0

Views

Author

Keywords

Crossrefs

Absolute values are essentially the same as A046981, where zeros are replaced by ones.

Formula

a(4n+2) = 0, a(n) = (-1)^[n == 1, 4, 7 mod 8] * n!/2^floor(n/2). - Ralf Stephan, Mar 06 2004

A092830 Central Delannoy numbers that are primes.

Original entry on oeis.org

3, 13, 265729
Offset: 1

Views

Author

Eric W. Weisstein, Mar 06 2004

Keywords

Comments

Apart from the first term this is a subsequence of A101167. - Reinhard Zumkeller, Dec 03 2004
Next term, if it exists, is > 10^(300). - Emeric Deutsch, Mar 01 2005

Crossrefs

Showing 1-6 of 6 results.