A092985 a(n) is the product of the first n terms of an arithmetic progression with the first term 1 and common difference n.
1, 1, 3, 28, 585, 22176, 1339975, 118514880, 14454403425, 2326680294400, 478015854767451, 122087424094272000, 37947924636264267625, 14105590169042424729600, 6178966019176767549393375, 3150334059785191453342744576, 1849556085478041490537172810625
Offset: 0
Examples
a(5) = 1*6*11*16*21 = 22176.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
GAP
List([0..20], n-> Product([0..n-1], j-> j*n+1) ); # G. C. Greubel, Mar 04 2020
-
Magma
[1] cat [ (&*[j*n+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Mar 04 2020
-
Maple
a:= n-> mul(n*j+1, j=0..n-1): seq(a(n), n=0..20); # Alois P. Heinz, Nov 24 2015
-
Mathematica
Flatten[{1, Table[n^n * Pochhammer[1/n, n], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 05 2018 *)
-
PARI
vector(21, n, my(m=n-1); prod(j=0,m-1, j*m+1)) \\ G. C. Greubel, Mar 04 2020
-
Sage
[product(j*n+1 for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Mar 04 2020
Formula
a(n) = Product_{k=1..n} (1+(k-1)*n) = 1*(1+n)*(1+2n)*...*(n^2-n+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*n^(n-k). - Vladeta Jovovic, Jan 28 2005
a(n) = n! * [x^n] 1/(1 - n*x)^(1/n) for n > 0. - Ilya Gutkovskiy, Oct 05 2018
a(n) ~ sqrt(2*Pi) * n^(2*n - 3/2) / exp(n). - Vaclav Kotesovec, Oct 05 2018
Extensions
More terms from Erich Friedman, Aug 08 2005
Offset corrected by Alois P. Heinz, Nov 24 2015
Comments