Original entry on oeis.org
1, 3, 14, 585, 924, 1339975, 164604, 14454403425, 1163340147200, 478015854767451, 33644021190, 37947924636264267625, 29447897812956, 6178966019176767549393375, 1575167029892595726671372288
Offset: 1
a(7) = 164604, as A092985(7) = 118514880 and A057237(n) = 6
118514880/720 =164604.
A256268
Table of k-fold factorials, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0
1 1 1 1 1 1 1... A000012
1 1 2 6 24 120 720... A000142
1 1 3 15 105 945 10395... A001147
1 1 4 28 280 3640 58240... A007559
1 1 5 45 585 9945 208845... A007696
1 1 6 66 1056 22176 576576... A008548
1 1 7 91 1729 43225 1339975... A008542
1 1 8 120 2640 76560 2756160... A045754
1 1 9 153 3825 126225 5175225... A045755
1 1 10 190 5320 196840 9054640... A045756
1 1 11 231 7161 293601 14977651... A144773
-
Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n-1]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
-
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
-
T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
-
T(n,k) = prod(j=0, n-1, j*k+1);
for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
-
[[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
A076111
Product of terms in n-th row of A076110.
Original entry on oeis.org
1, 2, 15, 280, 9945, 576576, 49579075, 5925744000, 939536222625, 190787784140800, 48279601331512551, 14894665739501184000, 5502449072258318805625, 2397950328737212204032000
Offset: 0
-
List([0..15], n-> Product([1..n], j-> j*n+1) ); # G. C. Greubel, Mar 04 2020
-
[1] cat [&*[j*n+1: j in [1..n]]: n in [1..15]]; // G. C. Greubel, Mar 04 2020
-
seq( mul(j*n+1, j=1..n), n=0..15); # G. C. Greubel, Mar 04 2020
-
Table[Product[j*n+1, {j,n}], {n,0,15}] (* G. C. Greubel, Mar 04 2020 *)
-
A076111(n):=prod(1+n*k,k,1,n)$
makelist(A076111(n),n,0,30); /* Martin Ettl, Nov 07 2012 */
-
vector(16, n, my(m=n-1); prod(j=1,m, j*m+1)) \\ G. C. Greubel, Mar 04 2020
-
[product(j*n+1 for j in (1..n)) for n in (0..15)] # G. C. Greubel, Mar 04 2020
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
A349731
a(n) = -(-n)^n * FallingFactorial(1/n, n) for n >= 1 and a(0) = -1.
Original entry on oeis.org
-1, 1, 1, 10, 231, 9576, 623645, 58715280, 7547514975, 1270453824640, 271252029133449, 71635824470246400, 22929813173612997575, 8747686347650933760000, 3921812703436118765113125, 2041590849971133677650610176, 1221367737152989777782325269375, 832163138229382457228044554240000
Offset: 0
The main diagonal of
A349971 for n >= 1.
The Stirling set counterpart is
A318183.
-
[-1,1] cat [Round(n^(n-1)*Gamma((n^2-1)/n)/Gamma((n-1)/n)): n in [2..30]]; // G. C. Greubel, Feb 22 2022
-
A349731 := n -> -add((-1)^(n-k)*Stirling1(n, n-k)*(-n)^k, k = 0..n):
seq(A349731(n), n = 0..17);
-
a[0] = -1; a[n_] := -(-n)^n * FactorialPower[1/n, n]; Array[a, 18, 0] (* Amiram Eldar, Dec 21 2021 *)
-
from sympy import ff
from fractions import Fraction
def A349731(n): return -1 if n == 0 else -(-n)**n*ff(Fraction(1,n),n) # Chai Wah Wu, Dec 21 2021
-
def a(n): return -(-n)^n*falling_factorial(1/n, n) if n > 0 else -1
print([a(n) for n in (1..17)])
A352074
a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-n)^(n-k).
Original entry on oeis.org
1, 1, 4, 42, 904, 34070, 2019888, 174588120, 20804747136, 3276218158560, 659664288364800, 165425062846302336, 50574549124825998336, 18520126461205806360144, 8003819275469728355033088, 4031020344281171589447408000, 2340375822778055527109749211136
Offset: 0
-
Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS1[n, k] k! (-n)^(n - k), {k, 0, n}], {n, 0, 16}]
Join[{1}, Table[n! SeriesCoefficient[1/(1 + Log[1 - n x]/n), {x, 0, n}], {n, 1, 16}]]
-
a(n) = sum(k=0, n, stirling(n, k, 1)*k!*(-n)^(n-k)); \\ Michel Marcus, Mar 02 2022
A355006
Triangle read by rows. T(n, k) = n^(n - k) * |Stirling1(n, k)|.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 18, 9, 1, 0, 384, 176, 24, 1, 0, 15000, 6250, 875, 50, 1, 0, 933120, 355104, 48600, 3060, 90, 1, 0, 84707280, 29647548, 3899224, 252105, 8575, 147, 1, 0, 10569646080, 3425697792, 430309376, 27725824, 1003520, 20608, 224, 1
Offset: 0
Table T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 18, 9, 1;
[4] 0, 384, 176, 24, 1;
[5] 0, 15000, 6250, 875, 50, 1;
[6] 0, 933120, 355104, 48600, 3060, 90, 1;
[7] 0, 84707280, 29647548, 3899224, 252105, 8575, 147, 1;
[8] 0, 10569646080, 3425697792, 430309376, 27725824, 1003520, 20608, 224, 1;
-
seq(seq(n^(n - k)*abs(Stirling1(n, k)), k = 0..n), n = 0..9);
-
T[n_, k_] := If[n == k == 0, 1, n^(n - k) * Abs[StirlingS1[n, k]]]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Jun 17 2022 *)
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Showing 1-7 of 7 results.
Comments