cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096507 Numbers k such that 6*R_k + 1 is a prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 2, 6, 8, 9, 11, 20, 23, 41, 63, 66, 119, 122, 149, 252, 284, 305, 592, 746, 875, 1204, 1364, 2240, 2403, 5106, 5776, 5813, 12456, 14235, 39606, 55544, 84239, 275922
Offset: 1

Views

Author

Labos Elemer, Jul 12 2004

Keywords

Comments

Also numbers k such that (2*10^k + 1)/3 is prime.
These numbers form a near-repdigit sequence (6)w7.
All the terms from k = 2403 through 14235 correspond to primes. - Joao da Silva (zxawyh66(AT)yahoo.com), Oct 03 2005

Examples

			k = 9 gives 2000000001/3 = 666666667, which is prime.
k = 20 gives 66666666666666666667, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2500, PrimeQ[FromDigits@ Table[6, {#}] + 1] &] (* or *)
    Select[Range@ 2500, PrimeQ[2 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jul 04 2016 *)

Formula

a(n) = A056657(n) + 1.

Extensions

More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Sep 14 2004
39606 and 55544 from Serge Batalov, Jun 2009
84239 from Serge Batalov, Jul 06 2009 confirmed as next term by Ray Chandler, Feb 23 2012
a(33) from Kamada data by Tyler Busby, Apr 14 2024

A056657 Numbers k such that 60*R_k + 7 is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

0, 1, 5, 7, 8, 10, 19, 22, 40, 62, 65, 118, 121, 148, 251, 283, 304, 591, 745, 874, 1203, 1363, 2239, 2402, 5105, 5775, 5812, 12455, 14234, 39605, 55543, 84238, 275921
Offset: 1

Views

Author

Robert G. Wilson v, Aug 09 2000

Keywords

Comments

Also numbers k such that (20*10^k+1)/3 is prime.

Examples

			7, 67, 666667, 66666667, 666666667, 66666666667, etc. are primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 60*(10^n - 1)/9 + 7 ], Print[n]], {n, 25556}]

Formula

a(n) = A096507(n) - 1.

Extensions

More terms from Robert G. Wilson v, Oct 22 2003
2239,2402,5105,5775 from Farideh Firoozbakht, Dec 23 2003
39605 and 55543 from Serge Batalov, Jun 2009
84238 from Serge Batalov, Jul 06 2009 confirmed as next term by Ray Chandler, Feb 23 2012
a(33) derived from A096507 by Robert Price, Jul 07 2024

A105324 Numbers n such that 2*reversal(n)=sigma(n).

Original entry on oeis.org

6, 73, 483, 4074, 4473, 4623, 7993, 42813, 69855, 253782, 799993, 7999993, 46000023, 426000213, 4600000023, 6718967838, 42600000213, 46000000023, 79999999993, 426000000213
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 16 2005

Keywords

Comments

I. If p=8*10^n-7 is a prime then p is in the sequence because reversal(p)=4*10^n-3 & sigma(p)=8*10^n-6 so 2*reversal(p) =sigma(p). 73,7993,799993 & 7999993 are such terms.
II. If q=(2*10^n+1)/3 is a prime then (a): 69*q is in the sequence because 69*q=46*10^n+23; reversal (69*q)=32*10^n+64 & sigma(69*q)=96*q+96=64*10^n+128 so 2*reversal (69*q)=sigma(69*q). 483,4623 & 46000023 are such terms. (b): 639*q is in the sequence because 639*q=426*10^n+213; reversal (639*q)=312*10^n+624 & sigma(639*q)=936*q+936=624*10^n+1248 so 2*reversal(639*q)=sigma(639*q). 42813 & 426000213 are such terms.
a(21) > 10^12. - Giovanni Resta, Oct 28 2012

Examples

			253782 is in the sequence because reversal(253782)=287352; sigma(253782)=574704 & 2*287352=574704.
		

Crossrefs

Programs

  • Mathematica
    reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[2* reversal[n]== DivisorSigma[1, n], Print[n]], {n, 1000000000}]
    Select[Range[8*10^6],2*IntegerReverse[#]==DivisorSigma[1,#]&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Oct 29 2022 *)

Extensions

a(15)-a(19) from Donovan Johnson, Dec 21 2008
a(20) from Giovanni Resta, Oct 28 2012

A104907 Numbers n such that d(n)*reversal(n)=sigma(n), where d(n) is number of positive divisors of n.

Original entry on oeis.org

1, 73, 861, 7993, 8241, 799993, 7999993, 44908500, 82000041, 293884500, 6279090751, 8200000041, 62698513951, 79999999993, 82000000041, 374665576800, 597921764310, 7999999999993, 8200000000041
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 16 2005

Keywords

Comments

All primes of the form 8*10^n-7 are in the sequence, so 8*10^A099190-3 is a subsequence of this sequence. A105322 is this subsequence. Also if p=(2*10^n+1)/3 is prime then 123*p is in the sequence, so 123*A093170 is a subsequence of this sequence. A105323 is this subsequence.
a(20) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			Let p=8*10^n-7 be a prime so d(p)=2; reversal(p)=4*10^n-3 and sigma(p)
=8*10^n-6 hence d(p)*reversal(p)=sigma(p) and this shows that p
is in the sequence. 73,7993,799993 and 7999993 are such terms.
Also let q=(2*10^n+1)/3 be a prime, so 123*q=82*10^n+41; reversal
(123*q)=14*10^n+28; d(123*q)=8 and sigma(123*q)=168*q+168=112*10^n
+224 hence d(123*q)*reversal(123*q)=sigma(123*q) and this shows
that 123*q is in the sequence. 861,8241 and 82000041 are such terms.
		

Crossrefs

Programs

  • Mathematica
    reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == DivisorSigma[1, n], Print[n]], {n, 1125000000}]
    Select[Range[8*10^6],DivisorSigma[0,#]IntegerReverse[#]==DivisorSigma[1,#]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Jan 31 2023 *)

Extensions

a(11)-a(15) from Donovan Johnson, Feb 06 2010
a(16) from Giovanni Resta, Feb 06 2014
a(17)-a(19) from Giovanni Resta, Jul 13 2015

A105323 Numbers of the form 41*(2*10^n+1) where (2*10^n+1)/3 is prime (n is in the sequence A096507).

Original entry on oeis.org

861, 8241, 82000041, 8200000041, 82000000041, 8200000000041, 8200000000000000000041, 8200000000000000000000041, 8200000000000000000000000000000000000000041
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 16 2005

Keywords

Comments

A105323=41*A093170=41*(2*10^A096507+1)=41*(2*10^(A056657+1)+1). If m is in the sequence then d(m)*reversal(m)=sigma(m) (see A104907). So this sequence is a subsequence of A104907.

Examples

			861 is in the sequence because 861=41*(2*10^1+1); (2*10^1+1)/3=7 and 7 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(2*10^n + 1)/3], Print[41*(2*10^n + 1)]], {n, 63}]

A351975 Numbers k such that A037276(k) == -1 (mod k).

Original entry on oeis.org

1, 6, 14, 18, 48, 124, 134, 284, 3135, 4221, 9594, 16468, 34825, 557096, 711676, 746464, 1333334, 2676977, 6514063, 11280468, 16081252, 35401658, 53879547, 133333334, 198485452, 223856659, 1333333334, 2514095219, 2956260256, 3100811124, 10912946218, 19780160858
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 26 2022

Keywords

Comments

Numbers k such that the concatenation of prime factors of k is 1 less than a multiple of k.
Contains 2*m for m in A093170.
Terms k where k-1 is prime include 6, 14, 18, 48 and 284. Are there others?

Examples

			a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
		

Crossrefs

Programs

  • Maple
    tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc:
    filter:= proc(n) local F,t,i;
    F:= map(t -> t[1]$t[2], sort(ifactors(n)[2],(a,b)->a[1]
    				
  • Python
    from sympy import factorint
    def A037276(n):
        if n == 1: return 1
        return int("".join(str(p)*e for p, e in sorted(factorint(n).items())))
    def afind(limit, startk=1):
        for k in range(startk, limit+1):
            if (A037276(k) + 1)%k == 0:
                print(k, end=", ")
    afind(10**6) # Michael S. Branicky, Feb 27 2022
    # adapted and corrected by Martin Ehrenstein, Mar 06 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A351975_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            c = 0
            for d in sorted(factorint(k,multiple=True)):
                c = (c*10**len(str(d)) + d) % k
            if c == k-1:
                yield k
    A351975_list = list(islice(A351975_gen(),10)) # Chai Wah Wu, Feb 28 2022

Extensions

a(24)-a(25) from Michael S. Branicky, Feb 27 2022
Prepended 1 and more terms from Martin Ehrenstein, Feb 28 2022

A355970 Primes p such that p^2 is the concatenation of x and 2*x+1 for some x.

Original entry on oeis.org

5, 7, 67, 28573, 666667, 31578949, 64912283, 66666667, 666666667, 66666666667, 29083665338647, 31772053083528493, 50819672131147541, 4299928432854102613, 6811594202898550727, 66666666666666666667, 29136816792745854416111, 46823891622677827205227, 66666666666666666666667
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jul 21 2022

Keywords

Examples

			a(3) = 67 is a term because it is prime and 67^2 = 4489 is the concatenation of 44 and 2*44+1=89.
		

Crossrefs

Contains A093170.

Programs

  • Maple
    dcat:=proc(a,b) a*10^(1+ilog10(b))+b end proc:
    f:= proc(t) local s;
    if not issqr(t) then return NULL fi;
    s:=sqrt(t);
    if isprime(s) then return s fi
    end proc:
    map(f, [seq(dcat(x,2*x+1), x=1..5*10^7)]);

Extensions

More terms from Jinyuan Wang, Jul 21 2022
Showing 1-7 of 7 results.