A096507
Numbers k such that 6*R_k + 1 is a prime, where R_k = 11...1 is the repunit (A002275) of length k.
Original entry on oeis.org
1, 2, 6, 8, 9, 11, 20, 23, 41, 63, 66, 119, 122, 149, 252, 284, 305, 592, 746, 875, 1204, 1364, 2240, 2403, 5106, 5776, 5813, 12456, 14235, 39606, 55544, 84239, 275922
Offset: 1
k = 9 gives 2000000001/3 = 666666667, which is prime.
k = 20 gives 66666666666666666667, which is prime.
-
Select[Range@ 2500, PrimeQ[FromDigits@ Table[6, {#}] + 1] &] (* or *)
Select[Range@ 2500, PrimeQ[2 (10^# - 1)/3 + 1] &] (* Michael De Vlieger, Jul 04 2016 *)
More terms from Julien Peter Benney (jpbenney(AT)ftml.net), Sep 14 2004
A056657
Numbers k such that 60*R_k + 7 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
Original entry on oeis.org
0, 1, 5, 7, 8, 10, 19, 22, 40, 62, 65, 118, 121, 148, 251, 283, 304, 591, 745, 874, 1203, 1363, 2239, 2402, 5105, 5775, 5812, 12455, 14234, 39605, 55543, 84238, 275921
Offset: 1
7, 67, 666667, 66666667, 666666667, 66666666667, etc. are primes.
39605 and 55543 from Serge Batalov, Jun 2009
84238 from Serge Batalov, Jul 06 2009 confirmed as next term by
Ray Chandler, Feb 23 2012
A105324
Numbers n such that 2*reversal(n)=sigma(n).
Original entry on oeis.org
6, 73, 483, 4074, 4473, 4623, 7993, 42813, 69855, 253782, 799993, 7999993, 46000023, 426000213, 4600000023, 6718967838, 42600000213, 46000000023, 79999999993, 426000000213
Offset: 1
253782 is in the sequence because reversal(253782)=287352; sigma(253782)=574704 & 2*287352=574704.
-
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[2* reversal[n]== DivisorSigma[1, n], Print[n]], {n, 1000000000}]
Select[Range[8*10^6],2*IntegerReverse[#]==DivisorSigma[1,#]&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Oct 29 2022 *)
A104907
Numbers n such that d(n)*reversal(n)=sigma(n), where d(n) is number of positive divisors of n.
Original entry on oeis.org
1, 73, 861, 7993, 8241, 799993, 7999993, 44908500, 82000041, 293884500, 6279090751, 8200000041, 62698513951, 79999999993, 82000000041, 374665576800, 597921764310, 7999999999993, 8200000000041
Offset: 1
Let p=8*10^n-7 be a prime so d(p)=2; reversal(p)=4*10^n-3 and sigma(p)
=8*10^n-6 hence d(p)*reversal(p)=sigma(p) and this shows that p
is in the sequence. 73,7993,799993 and 7999993 are such terms.
Also let q=(2*10^n+1)/3 be a prime, so 123*q=82*10^n+41; reversal
(123*q)=14*10^n+28; d(123*q)=8 and sigma(123*q)=168*q+168=112*10^n
+224 hence d(123*q)*reversal(123*q)=sigma(123*q) and this shows
that 123*q is in the sequence. 861,8241 and 82000041 are such terms.
-
reversal[n_]:= FromDigits[Reverse[IntegerDigits[n]]]; Do[If[DivisorSigma[0, n]*reversal[n] == DivisorSigma[1, n], Print[n]], {n, 1125000000}]
Select[Range[8*10^6],DivisorSigma[0,#]IntegerReverse[#]==DivisorSigma[1,#]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Jan 31 2023 *)
A105323
Numbers of the form 41*(2*10^n+1) where (2*10^n+1)/3 is prime (n is in the sequence A096507).
Original entry on oeis.org
861, 8241, 82000041, 8200000041, 82000000041, 8200000000041, 8200000000000000000041, 8200000000000000000000041, 8200000000000000000000000000000000000000041
Offset: 1
861 is in the sequence because 861=41*(2*10^1+1); (2*10^1+1)/3=7 and 7 is prime.
A351975
Numbers k such that A037276(k) == -1 (mod k).
Original entry on oeis.org
1, 6, 14, 18, 48, 124, 134, 284, 3135, 4221, 9594, 16468, 34825, 557096, 711676, 746464, 1333334, 2676977, 6514063, 11280468, 16081252, 35401658, 53879547, 133333334, 198485452, 223856659, 1333333334, 2514095219, 2956260256, 3100811124, 10912946218, 19780160858
Offset: 1
a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
-
tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc:
filter:= proc(n) local F,t,i;
F:= map(t -> t[1]$t[2], sort(ifactors(n)[2],(a,b)->a[1]
-
from sympy import factorint
def A037276(n):
if n == 1: return 1
return int("".join(str(p)*e for p, e in sorted(factorint(n).items())))
def afind(limit, startk=1):
for k in range(startk, limit+1):
if (A037276(k) + 1)%k == 0:
print(k, end=", ")
afind(10**6) # Michael S. Branicky, Feb 27 2022
# adapted and corrected by Martin Ehrenstein, Mar 06 2022
-
from itertools import count, islice
from sympy import factorint
def A351975_gen(startvalue=1): # generator of terms >= startvalue
for k in count(max(startvalue,1)):
c = 0
for d in sorted(factorint(k,multiple=True)):
c = (c*10**len(str(d)) + d) % k
if c == k-1:
yield k
A351975_list = list(islice(A351975_gen(),10)) # Chai Wah Wu, Feb 28 2022
A355970
Primes p such that p^2 is the concatenation of x and 2*x+1 for some x.
Original entry on oeis.org
5, 7, 67, 28573, 666667, 31578949, 64912283, 66666667, 666666667, 66666666667, 29083665338647, 31772053083528493, 50819672131147541, 4299928432854102613, 6811594202898550727, 66666666666666666667, 29136816792745854416111, 46823891622677827205227, 66666666666666666666667
Offset: 1
a(3) = 67 is a term because it is prime and 67^2 = 4489 is the concatenation of 44 and 2*44+1=89.
-
dcat:=proc(a,b) a*10^(1+ilog10(b))+b end proc:
f:= proc(t) local s;
if not issqr(t) then return NULL fi;
s:=sqrt(t);
if isprime(s) then return s fi
end proc:
map(f, [seq(dcat(x,2*x+1), x=1..5*10^7)]);
Showing 1-7 of 7 results.
Comments