cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094433 a(n) is the left term in M^n * [1 0 0], M = the 3 X 3 matrix [1 -1 0 / -1 3 -2 / 0 -2 2].

Original entry on oeis.org

1, 1, 2, 6, 24, 108, 504, 2376, 11232, 53136, 251424, 1189728, 5629824, 26640576, 126064512, 596543616, 2822874624, 13357986048, 63210668544, 299116094976, 1415432558592, 6697898781696, 31694797338624, 149981391341568, 709719564017664, 3358429036056576
Offset: 0

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

Right term of M^n * [1 0 0] = A094434(n).
a(n)/a(n-1) tends to 3 + sqrt(3) = 4.732050807... (A165663).
A094434(n)/a(n) tends to 1 + sqrt(3) = 2.732050807... (A090388).
M is a "stiffness matrix" with k1 = 1, k2 = 2; in K = [k1 -k1 0 / -k1 (k1 + k2) -k2 / 0 -k2 k2], where K relates to Hooke's Law governing the force on nodes of springs resulting from stretching or compressing the springs (see A094431).
The eigenvalues of M are 3+sqrt(3), 3-sqrt(3) and 0. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4, 5>2, 5>3, 5>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the elements in positions 1 and 5 are larger than the elements in positions 2, 3 and 4. - Sergey Kitaev, Dec 11 2020

Examples

			a(4) = 24 since M^4 * [1 0 0] = [24 -84 60].
G.f. = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 108*x^5 + 504*x^6 + 2376*x^7 + ...
		

References

  • Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, p. 86-87.

Crossrefs

Programs

  • Maple
    a:= n-> (<<1|-1|0>, <-1|3|-2>, <0|-2|2>>^n)[1$2]:
    seq(a(n), n=0..28);  # Alois P. Heinz, Dec 11 2020
  • Mathematica
    Table[(MatrixPower[{{1, -1, 0}, {-1, 3, -2}, {0, -2, 2}}, n].{1, 0, 0})[[1]], {n, 24}] (* Robert G. Wilson v *)
    Table[(3 + Sqrt[3])^n + (3 - Sqrt[3])^n, {n, 0, 20}] // Simplify (* Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 *)
    Rest@ CoefficientList[Series[x (1 - 4 x)/(1 - 6 x + 6 x^2), {x, 0, 23}], x] (* Michael De Vlieger, May 01 2019 *)
  • Sage
    [lucas_number2(n,6,6)for n in range(-1,23)] # Zerinvary Lajos, Jul 08 2008

Formula

a(n) = (3+sqrt(3))^(n-2) + (3-sqrt(3))^(n-2). - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Mar 23 2008 [Corrected by R. J. Mathar, Mar 28 2010, Jun 02 2010]
G.f.: 1 + x*(1-4*x)/(1-6*x+6*x^2). - R. J. Mathar, Mar 28 2010

Extensions

More terms from Robert G. Wilson v, May 08 2004
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020

A094431 a(n) = left term in M^n * [1 0 0], where M = the 3 X 3 matrix [1 -1 0 / -1 4 -3 / 0 -3 3].

Original entry on oeis.org

1, 1, 2, 7, 38, 241, 1586, 10519, 69878, 464353, 3085922, 20508199, 136292294, 905764561, 6019485842, 40004005687, 265856672918, 1766817332161, 11741828601026, 78033272818759, 518589725140838, 3446418345757873, 22904039239795442, 152214548806542679, 1011580037294182454, 6722709359094575521
Offset: 0

Views

Author

Gary W. Adamson, May 02 2004

Keywords

Comments

a(n)/a(n-1) tends to 4 + sqrt(7) = 6.6457513... A094432(n)/a(n) tends to 2 + sqrt(7) = 4.645638... 3. M is a "stiffness matrix" K = [k1 -k1 0 / -k1 (k1 + k2) -k2 / 0 -k2 k2] with k1 = 1, k2 = 3. K governs the force exerted on a spring with nodes, in comparison with the spring in a "no tension" position (Fig 3.2.1, p. 86, Meyer). "Stretching or compressing the springs creates a force on each node according to Hooke's law that says that the force exerted by a spring is F = kx where x is the distance the spring is stretched or compressed and where k is the stiffness constant inherent to the spring".

Examples

			a(4) = 38 since M^4 * [1 0 0] =[38 -203 165].
		

References

  • Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra" SIAM, 2000, p. 86.

Crossrefs

Cf. A094432.

Programs

  • Mathematica
    Table[(MatrixPower[{{1, -1, 0}, {-1, 4, -3}, {0, -3, 3}}, n].{1, 0, 0})[[1]], {n, 21}] (* Robert G. Wilson v *)

Formula

From Colin Barker, Apr 02 2012: (Start)
a(n) = 8*a(n-1) - 9*a(n-2).
G.f.: (1 - 7*x + 3*x^2)/(1 - 8*x + 9*x^2). (End)

Extensions

More terms from Robert G. Wilson v, May 08 2004
a(0)=1 prepended by Andrew Howroyd, Dec 27 2024

A154245 a(n) = ( (4 + sqrt(7))^n - (4 - sqrt(7))^n )/(2*sqrt(7)).

Original entry on oeis.org

1, 8, 55, 368, 2449, 16280, 108199, 719072, 4778785, 31758632, 211059991, 1402652240, 9321678001, 61949553848, 411701328775, 2736064645568, 18183205205569, 120841059834440, 803079631825399, 5337067516093232
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Second binomial transform of A109115.
Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(7) = 6.6457513110....

Crossrefs

Equals (A094432 without initial term 0)/3.
Cf. A010465 (decimal expansion of square root of 7), A109115.

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-9*a[n-2]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-7); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1,8]; [n le 2 select I[n] else 8*Self(n-1)-9*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 08 2016
    
  • Mathematica
    Table[Simplify[((4+Sqrt[7])^n -(4-Sqrt[7])^n)/(2*Sqrt[7])], {n, 30}] (* or *) LinearRecurrence[{8, -9},{1, 8}, 30] (* G. C. Greubel, Sep 07 2016 *)
    Rest@ CoefficientList[Series[x/(1 -8x +9x^2), {x, 0, 30}], x] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    my(x='x+O('x^30)); Vec( x/(1-8*x+9*x^2) ) \\ G. C. Greubel, May 21 2019
    
  • Sage
    [lucas_number1(n,8,9) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 9*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 9*x^2). (End)
a(n) = b such that (3^(n-1)/2)*Integral_{x=0..Pi/2} (sin(n*x))/(4/3-cos(x)) dx = c + b*log(2). - Francesco Daddi, Aug 02 2011
E.g.f.: (1/sqrt(7))*exp(4*x)*sinh(sqrt(7)*x). - G. C. Greubel, Sep 07 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Showing 1-3 of 3 results.