A190958
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0
Sequences of the form a(n) = c*a(n-1) - d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
-
LinearRecurrence[{2,-10}, {0,1}, 50]
-
a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
[lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
A083099
a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
The following sequences (and others) belong to the same family:
A000129,
A001333,
A002532,
A002533,
A002605,
A015518,
A015519,
A026150,
A046717,
A063727,
A083098,
A083099,
A083100,
A084057.
-
[n le 2 select n-1 else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
A083099 := proc(n)
option remember;
if n <= 1 then
n;
else
2*procname(n-1)+6*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Sep 23 2016
-
CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *)
Expand[Table[((1 + Sqrt[7])^n - (1 - Sqrt[7])^n)7/(14Sqrt[7]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)
LinearRecurrence[{2,6}, {0,1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
-
a(n)=([0,1; 6,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,2,-6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
-
A083099=BinaryRecurrenceSequence(2,6,0,1)
[A083099(n) for n in range(41)] # G. C. Greubel, Jun 01 2023
A094432
a(n) = rightmost term in M^n * [1 0 0]. M = the 3 X 3 stiffness matrix [1 -1 0 / -1 4 -3 / 0 -3 3].
Original entry on oeis.org
0, 3, 24, 165, 1104, 7347, 48840, 324597, 2157216, 14336355, 95275896, 633179973, 4207956720, 27965034003, 185848661544, 1235103986325, 8208193936704, 54549615616707, 362523179503320, 2409238895476197, 16011202548279696
Offset: 1
a(4) = 165 since M^4 * [1 0 0] = [38 -203 165].
- Carl D. Meyer, "Matrix Analysis and Applied Linear Algebra", SIAM, 2000, pp. 86.-87.
-
Table[(MatrixPower[{{1, -1, 0}, {-1, 4, -3}, {0, -3, 3}}, n].{1, 0, 0})[[3]], {n, 21}] (* Robert G. Wilson v, May 08 2004 *)
Showing 1-3 of 3 results.
Comments