A096617 Numerator of n*HarmonicNumber(n).
1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1
Examples
1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
References
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Complete Set
Programs
-
Magma
[Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
-
Maple
ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
-
Mathematica
Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *) Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}] (* Jean-François Alcover, Feb 17 2014 *)
-
PARI
{h(n) = sum(k=1,n,1/k)}; for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
-
PARI
A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019
Formula
a(n) = abs(Stirling1(n+1, 2))/(n-1)!. - Vladeta Jovovic, Jul 06 2004
a(n) = numerator of Integral_{t=0..oo} 1-(1-exp(-t/n))^n dt. - Jean-François Alcover, Feb 17 2014
Comments