cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096617 Numerator of n*HarmonicNumber(n).

Original entry on oeis.org

1, 3, 11, 25, 137, 147, 363, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 42822903, 275295799, 279175675, 56574159, 19093197, 444316699, 1347822955, 34052522467, 34395742267, 312536252003
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

a(1) = 1, a(n) = Numerator( H(n) / H(n-1) ), where H(n) = HarmonicNumber(n) = A001008(n)/A002805(n). - Alexander Adamchuk, Oct 29 2004
Sampling a population of n distinct elements with replacement, n HarmonicNumber(n) is the expectation of the sample size for the acquisition of all n distinct elements. - Franz Vrabec, Oct 30 2004
p^2 divides a(p-1) for prime p>3. - Alexander Adamchuk, Jul 16 2006
It appears that a(n) = b(n) defined by b(n+1) = b(n)*(n+1)/g(n) + f(n), f(n) = n*f(n-1)/g(n) and g(n) = gcd(b(n)*(n+1), n*f(n-1)), b(1) = f(1) = g(1) = 1, i.e., the recurrent formula of A000254(n) where both terms are divided by their GCD at each step (and remain divided by this factor in the sequel). Is this easy to prove? - M. F. Hasler, Jul 04 2019

Examples

			1, 3, 11/2, 25/3, 137/12, 147/10, 363/20, 761/35, 7129/280, ...
		

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 2nd Ed. 1957, p. 211, formula (3.3)

Crossrefs

Differs from A025529 at 7th term.
Cf. A193758.

Programs

  • Magma
    [Numerator(n*HarmonicNumber(n)): n in [1..40]]; // Vincenzo Librandi, Feb 19 2014
    
  • Maple
    ZL:=n->sum(sum(1/i, i=1..n), j=1..n): a:=n->floor(numer(ZL(n))): seq(a(n), n=1..27); # Zerinvary Lajos, Jun 14 2007
  • Mathematica
    Numerator[Table[(Sum[(1/k), {k, 1, n}]/Sum[(1/k), {k, 1, n-1}]), {n, 1, 20}]] (* Alexander Adamchuk, Oct 29 2004 *)
    Table[n*HarmonicNumber[n] // Numerator, {n, 1, 27}]  (* Jean-François Alcover, Feb 17 2014 *)
  • PARI
    {h(n) = sum(k=1,n,1/k)};
    for(n=1,50, print1(numerator(n*h(n)), ", ")) \\ G. C. Greubel, Sep 01 2018
    
  • PARI
    A=List(f=1); for(k=1,999, t=[A[k]*(k+1),f*=k]; t/=gcd(t); listput(A,t[1]+f=t[2])) \\ Illustrate conjectured equality. - M. F. Hasler, Jul 04 2019

Formula

a(n) = abs(Stirling1(n+1, 2))/(n-1)!. - Vladeta Jovovic, Jul 06 2004
a(n) = numerator of Integral_{t=0..oo} 1-(1-exp(-t/n))^n dt. - Jean-François Alcover, Feb 17 2014