cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A063108 a(1) = 1; thereafter a(n+1) = a(n) + product of nonzero digits of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362
Offset: 1

Views

Author

Paul A. Loomis, Aug 08 2001

Keywords

Comments

Conjecture: no matter what the starting term is, the sequence eventually joins this one. This should be true in any base - base 2, for example, is trivial.
A063114 iterated, beginning with 1. - Reinhard Zumkeller, Jan 15 2012

Examples

			a(2) = 1 + 1 = 2; a(3) = 4; a(6) = 16 + 1*6 = 22; a(22) = 206 + 2*6 = 218.
		

Crossrefs

Programs

  • Haskell
    a063108_list = iterate a063114 1  -- Reinhard Zumkeller, Jan 15 2012
  • Maple
    with transforms;
    f:=proc(n) option remember; if n=1 then 1
    else f(n-1)+digprod(f(n-1)); fi; end;
    [seq(f(n),n=1..20)];
    # N. J. A. Sloane, Oct 12 2013
  • Mathematica
    f[ n_Integer ] := Block[{s = Sort[ IntegerDigits[ n ]]}, While[ s[[ 1 ]] == 0, s = Drop[ s, 1 ]]; n + Times @@ s]; NestList[ f, 1, 65 ]
    nxt[n_]:=n+Times@@Select[IntegerDigits[n],#>0&]; NestList[nxt,1,50] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    lista(n)={ my(a=vector(n)); a[1]=1; for(i=1, #a-1, a[i+1] = a[i] + vecprod(select(x->x, digits(a[i])))); a } \\ Harry J. Smith, Aug 18 2009
    

Formula

A crude heuristic analysis suggests that a(n) grows roughly like (8/9 * (1-y))^(1/(1-y)) * n^(1/1-y) where y = log_10(4.5), i.e., that a(n) ~ 0.033591*n^2.8836.

Extensions

More terms from Robert G. Wilson v, Aug 09 2001

A065383 a(n) = smallest prime >= n*(n + 1)/2.

Original entry on oeis.org

2, 2, 3, 7, 11, 17, 23, 29, 37, 47, 59, 67, 79, 97, 107, 127, 137, 157, 173, 191, 211, 233, 257, 277, 307, 331, 353, 379, 409, 439, 467, 499, 541, 563, 599, 631, 673, 709, 743, 787, 821, 863, 907, 947, 991, 1039, 1087, 1129, 1181, 1229, 1277, 1327, 1381, 1433
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2001

Keywords

Comments

Besides 7, terms exclude the greater of the twin primes (A006512). - Bill McEachen, Dec 01 2022

Crossrefs

See A097050 for another version.
Cf. A000217.

Programs

  • Haskell
    a065383 n = head $ dropWhile (< a000217 n) a000040_list
    -- Reinhard Zumkeller, Aug 03 2012
  • Mathematica
    PrimeNext[n_]:=Module[{k=n},While[ !PrimeQ[k],k++ ];k];f[n_]:=n*(n+1)/2;lst={};Do[AppendTo[lst,PrimeNext[f[n]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2010 *)
    NextPrime/@(Accumulate[Range[0,60]]-1) (* Harvey P. Dale, Jul 31 2012 *)
  • PARI
    { for (n=0, 1000, write("b065383.txt", n, " ", nextprime(n*(n + 1)/2)) ) } \\ Harry J. Smith, Oct 17 2009
    

Extensions

Edited by N. J. A. Sloane, Nov 21 2008

A077128 Smallest number greater than the previous term which is relatively prime to each of the group of the next n numbers.

Original entry on oeis.org

2, 5, 7, 11, 17, 23, 29, 37, 47, 59, 67, 79, 97, 107, 127, 137, 157, 173, 191, 211, 233, 257, 277, 307, 331, 353, 379, 409, 439, 467, 499, 541, 563, 599, 631, 673, 709, 743, 787, 821, 863, 907, 947, 991, 1039, 1087, 1129, 1181, 1229, 1277, 1327, 1381, 1433
Offset: 1

Views

Author

Amarnath Murthy, Oct 29 2002

Keywords

Comments

Conjecture : every member is a prime.

Examples

			a(6) = 23 is the smallest number coprime to 16,17,18,19,20 and 21. - _R. J. Mathar_, Sep 02 2008
		

Crossrefs

Cf. A097050. - R. J. Mathar, Sep 02 2008

Programs

  • Maple
    A000217 := proc(n) n*(n+1)/2 ; end: A077128 := proc(n) option remember ; local ts,a,goodk,k ; if n = 1 then RETURN(2) ; fi; ts := [seq(A000217(n-1)+i,i=1..n)] ; for a from procname(n-1)+1 do goodk := true ; for k in ts do if gcd(a,k) <> 1 then goodk := false; break ; fi; od: if goodk then RETURN(a) ; fi; od: end: for n from 1 to 100 do printf("%d,",A077128(n)) ; od: # R. J. Mathar, Sep 02 2008

Extensions

Extended beyond a(10) by R. J. Mathar, Sep 02 2008

A181956 Smallest prime greater than n*(n+1)^2/2.

Original entry on oeis.org

2, 3, 11, 29, 53, 97, 149, 227, 331, 457, 607, 797, 1019, 1277, 1579, 1931, 2333, 2767, 3251, 3803, 4421, 5087, 5821, 6637, 7507, 8461, 9479, 10589, 11777, 13063, 14419, 15877, 17431, 19079, 20849, 22691, 24659, 26717, 28901, 31219, 33623, 36187, 38833, 41627
Offset: 0

Views

Author

Gerasimov Sergey, Apr 03 2012

Keywords

Examples

			a(1)=2 because prime 2 > (0*(0+1)^2/2) = 0, a(2)=3 because prime 3 > (1*(1+1)^2/2) = 2, a(3)=11 because prime 11 > (2*(2+1)^2/2) = 9.
		

Crossrefs

Programs

Formula

a(n) ~ n^3 / 2. - Charles R Greathouse IV, Aug 03 2012

A147849 a(n) is the smallest triangular number > n-th prime.

Original entry on oeis.org

3, 6, 6, 10, 15, 15, 21, 21, 28, 36, 36, 45, 45, 45, 55, 55, 66, 66, 78, 78, 78, 91, 91, 91, 105, 105, 105, 120, 120, 120, 136, 136, 153, 153, 153, 153, 171, 171, 171, 190, 190, 190, 210, 210, 210, 210, 231, 231, 231, 231, 253, 253, 253, 253, 276, 276, 276, 276
Offset: 1

Views

Author

Zak Seidov, Nov 15 2008

Keywords

Crossrefs

Cf. A097050 (smallest prime > n-th triangular number).

Programs

  • Mathematica
    a1 = Reap[Do[p = Prime[m]; Do[t = n (n + 1)/2; If[t > p, Sow[t]; Break[]], {n, 200}], {m, 100}]][[2, 1]]
Showing 1-5 of 5 results.