A097223
Prime numbers p such that p = prime(n) and n = product of the digits of p.
Original entry on oeis.org
17, 73, 2475989
Offset: 1
2475989 is in the sequence because 2475989 is (2*4*7*5*9*8*9)-th prime.
- Jessie Byrnes, Chris Spicer and Alyssa Turnquist, The Sheldon Conjecture. Math Horizons, Vol. 23, No. 2 (November 2015), pp. 12-15 (4 pages); alternate link.
- Chris K. Caldwell and G. L. Honaker, Jr., 2475989
- Carl Pomerance, What we still don't know about addition and multiplication, Trjitzinsky Lecture 1, U. Illinois Urbana-Champaign, November 27, 2018. See slides 22 & 24.
- Carl Pomerance and Chris Spicer, Proof of the Sheldon Conjecture, The American Mathematical Monthly, September 2019, 126(8), 688-698; alternate link.
-
v={}; Do[If[h=IntegerDigits[Prime[n]]; l=Length[h]; p=Product[h[[k]], {k, l}]; p==n, v=Append[v, Prime[n]]; Print[v]], {n, 205000000}]
-
isok(p) = isprime(p) && (primepi(p) == vecprod(digits(p))); \\ Michel Marcus, Jan 27 2019
A097220
Numbers n such that pi(n) = product of digits of n.
Original entry on oeis.org
16, 17, 63, 73, 364, 437, 545, 573, 963, 6475, 23797, 67458, 2475989, 2475998
Offset: 1
2475998 is in the sequence because pi(2475998)=2*4*7*5*9*9*8.
1152 is in A002473. As 8643 <= prime(1152) <= 9794. Examples of the 13 numbers with product of digits is 1152 in that interval are: 8944, 9288, 9448, 9484 none of which are terms. - _David A. Corneth_, Nov 06 2018
-
[n: n in [1..10^5] | &*Intseq((n)) eq #PrimesUpTo(n)]; // Vincenzo Librandi, Nov 06 2018
-
v={}; Do[If[h=IntegerDigits[n]; l=Length[h]; p=Product[h[[k]], {k, l}]; PrimePi[n]==p, v=Append[v, n]; Print[v], If[Mod[n, 1000000]==0, Print[ -n]]], {n, 200000000}]
Select[Range[2500000],PrimePi[#]==Times@@IntegerDigits[#]&] (* Harvey P. Dale, Dec 04 2012 *)
-
isok(n) = primepi(n) == factorback(digits(n)); \\ Michel Marcus, Apr 23 2018
A097222
Numbers n such that for some k there exist k numbers a1,a2, ...,ak that concatenations of them is equal to n and sum of them is equal to Pi(n).
Original entry on oeis.org
15, 27, 39, 130, 131, 252, 370, 489, 1195, 2345, 3484, 4619, 5752, 6879
Offset: 1
9642459 is in the sequence because Pi(9642459)=9+642459
in fact a1=9 & a2=642459.
Showing 1-3 of 3 results.
Comments