cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099129 Let T(n) be the n-th triangular number n*(n+1)/2; then a(n) = n-th iteration T(T(T(...(n)))).

Original entry on oeis.org

0, 1, 6, 231, 1186570, 347357071281165, 2076895351339769460477611370186681, 143892868802856286225154411591351342616163027795335641150249224655238508171
Offset: 0

Views

Author

Jonathan Vos Post, Nov 14 2004

Keywords

Comments

The next term, a(8), has 162 digits. - Harvey P. Dale, May 29 2013

Examples

			a(3) = 231 because we can write the 3-time iterated expression on T(3), the triangular number sequence n*(n+1)/2, namely: T(T(T(3))) = 231.
		

Crossrefs

Cf. A000217, A007501, A058009 (analog with primes), A097547.

Programs

  • Maple
    a:= n-> (t-> (t@@n)(n))(j-> j*(j+1)/2):
    seq(a(n), n=0..7);  # Alois P. Heinz, Sep 29 2023
  • Mathematica
    Table[Nest[(#(#+1))/2&,n,n],{n,8}] (* Harvey P. Dale, May 29 2013 *)
  • PARI
    a(n) = my(k = n); for (j=1, n, k = k*(k+1)/2;); k; \\ Michel Marcus, Jan 01 2017

Formula

a(n) = A000217^n(n).
The sequence grows like O(n^2^n*1/2^n). This can be derived from the growth O(n^2*1/2) of the triangle sum by iteration. - Hieronymus Fischer, Jan 21 2006

Extensions

Offset changed to 1 by Georg Fischer, Jun 20 2022
a(0)=0 prepended by Alois P. Heinz, Sep 29 2023

A020955 a(n) = n^(2^n - n - 1).

Original entry on oeis.org

1, 1, 2, 81, 4194304, 1490116119384765625, 226267027688376192080197927193400943822503936, 258086210989349276047917817413172383631691140276099547911280598425927853437317437263620645695945672001
Offset: 0

Views

Author

Keywords

Comments

Number of finite models of natural number on the free class with n members.

Examples

			For n=2, a(2)=2, universe class={0,1}.
1 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 0,
2 : { }ma 0, {0}ma 1, {0,1}ma 1, {1}ma 1.
		

Crossrefs

Cf. A097547.

Formula

a(n) = A097547(n)/A007778(n), n > 0. - R. J. Mathar, Jan 12 2017

Extensions

a(0)=1 and a(7) corrected by Vincenzo Librandi, Apr 25 2011

A216992 Decimal expansion of Sum_{n = 1, ..., infinity } 1/n^(2^n).

Original entry on oeis.org

1, 0, 6, 2, 6, 5, 2, 4, 1, 6, 0, 2, 3, 1, 0, 6, 5, 1, 6, 2, 3, 4, 3, 1, 1, 9, 0, 7, 9, 4, 9, 7, 3, 2, 7, 8, 6, 1, 6, 0, 6, 4, 6, 2, 4, 2, 9, 5, 0, 7, 8, 5, 4, 8, 7, 4, 8, 1, 2, 5, 0, 5, 8, 3, 2, 4, 0, 8, 9, 3, 8, 4, 6, 2, 0, 9, 3, 6, 6, 0, 5, 1, 9, 3, 9, 6, 8, 7, 1, 9, 6, 6, 4, 4, 4, 2, 4, 9, 8, 0, 4, 5, 8, 9, 3
Offset: 1

Views

Author

Nicolas M. Perrault, Sep 21 2012

Keywords

Comments

The sum converges very quickly and therefore just a few summands are quite enough to get the value accurate to hundreds of decimal places. For example, 1/10^(2^10) = 10^(-1024), meaning that the impact of n = 10 on the sum can't be seen among the first thousand decimal digits. - Alonso del Arte, Sep 21 2012

Examples

			1.0626524160231065162343119079497327861...
		

Crossrefs

Cf. A097547.

Programs

  • Maple
    evalf(sum(1/n^(2^n), n=1..infinity), 140);  # Alois P. Heinz, Sep 29 2023
  • Mathematica
    RealDigits[Sum[1/n^(2^n), {n, 10}], 10, 105][[1]] (* T. D. Noe, Sep 21 2012 *)
  • PARI
    suminf(n=1,1/n^2^n) \\ Charles R Greathouse IV, Apr 21 2016
Showing 1-3 of 3 results.