cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A219601 Number of partitions of n in which no parts are multiples of 6.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 23 2012

Keywords

Comments

Also partitions where parts are repeated at most 5 times. [Joerg Arndt, Dec 31 2012]

Examples

			7 = 7
  = 5 + 2
  = 5 + 1 + 1
  = 4 + 3
  = 4 + 2 + 1
  = 4 + 1 + 1 + 1
  = 3 + 3 + 1
  = 3 + 2 + 2
  = 3 + 2 + 1 + 1
  = 3 + 1 + 1 + 1 + 1
  = 2 + 2 + 2 + 1
  = 2 + 2 + 1 + 1 + 1
  = 2 + 1 + 1 + 1 + 1 + 1
  = 1 + 1 + 1 + 1 + 1 + 1 + 1
so a(7) = 14.
		

Crossrefs

Cf. A097797.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Mathematica
    m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 6], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
  • PARI
    for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))

Formula

G.f.: P(x^6)/P(x), where P(x) = prod(k>=1, 1-x^k).
a(n) ~ Pi*sqrt(5) * BesselI(1, sqrt(5*(24*n + 5)/6) * Pi/6) / (3*sqrt(24*n + 5)) ~ exp(Pi*sqrt(5*n)/3) * 5^(1/4) / (12 * n^(3/4)) * (1 + (5^(3/2)*Pi/144 - 9/(8*Pi*sqrt(5))) / sqrt(n) + (125*Pi^2/41472 - 27/(128*Pi^2) - 25/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284326(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A097798 Number of partitions of n into abundant numbers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 4, 0, 1, 0, 2, 0, 4, 0, 2, 0, 0, 0, 7, 0, 2, 0, 2, 0, 8, 0, 5, 0, 2, 0, 14, 0, 4, 0, 4, 0, 14, 0, 8, 0, 5, 0, 23, 0, 9, 0, 9, 0, 26, 0, 18, 0, 9, 0, 38, 0, 16, 0, 17, 0, 46, 0, 29, 0, 19, 0, 65, 0, 32, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 25 2004

Keywords

Comments

n = 977 = 945 + 32 is the first prime for which sequence obtains a nonzero value, as a(977) = a(32) = 1. 945 is the first term in A005231. - Antti Karttunen, Sep 06 2018
a(n) = 0 for 496 values of n, the largest of which is 991 (see A283550). - David A. Corneth, Sep 08 2018

Crossrefs

Programs

  • Magma
    v:=[n:n in [1..100]| SumOfDivisors(n) gt 2*n]; [#RestrictedPartitions(n,Set(v)): n in [0..100]]; // Marius A. Burtea, Aug 02 2019
  • Mathematica
    n = 100; d = Select[Range[n], DivisorSigma[1, #] > 2 # &]; CoefficientList[ Series[1/Product[1 - x^d[[i]], {i, 1, Length[d]} ], {x, 0, n}], x] (* Amiram Eldar, Aug 02 2019 *)
  • PARI
    abundants_up_to_reversed(n) = { my(s = Set([])); for(k=1,n,if(sigma(k)>(2*k),s = setunion([k],s))); vecsort(s, ,4); };
    partitions_into(n,parts,from=1) = if(!n,1,my(k = #parts, s=0); for(i=from,k,if(parts[i]<=n, s += partitions_into(n-parts[i],parts,i))); (s));
    A097798(n) = partitions_into(n,abundants_up_to_reversed(n)); \\ Antti Karttunen, Sep 06 2018
    
  • PARI
    \\ see Corneth link
    

Extensions

a(0) = 1 prepended by David A. Corneth, Sep 08 2018

A097799 Number of partitions of the n-th deficient number into deficient numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 14, 20, 27, 37, 49, 85, 111, 143, 184, 234, 374, 585, 727, 899, 1360, 1664, 2028, 2985, 4343, 5218, 6252, 7474, 8913, 12591, 14918, 17639, 24519, 33836, 39646, 46377, 54165, 63162, 85507, 99276, 115103, 133276, 154116, 205308, 272190
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 25 2004

Keywords

Crossrefs

Programs

  • Mathematica
    n = 60; d = Select[Range[n], DivisorSigma[1, #] < 2 # &]; CoefficientList[ Series[1/Product[1 - x^d[[i]], {i, 1, Length[d]}], {x, 0, n}], x][[d + 1]] (* Amiram Eldar, Aug 02 2019 *)

A282566 Number of compositions (ordered partitions) of n into deficient numbers (A005100).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 62, 123, 244, 484, 960, 1904, 3777, 7492, 14861, 29478, 58472, 115984, 230064, 456350, 905208, 1795554, 3561628, 7064780, 14013568, 27797058, 55137735, 109370201, 216944729, 430327593, 853589936, 1693165371, 3358531834, 6661922265, 13214467050, 26211974934, 51993593638, 103133540536
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2017

Keywords

Examples

			a(3) = 4 because we have [3], [2, 1], [1, 2] and [1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 38; CoefficientList[Series[1/(1 - Sum[Boole[DivisorSigma[1, k] < 2 k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    Vec(1/(1 - sum(k=1, 38, (sigma(k)<2*k)*x^k)) + O(x^39)) \\ Indranil Ghosh, Mar 15 2017

Formula

G.f.: 1/(1 - Sum_{k>=1} x^A005100(k)).
Showing 1-4 of 4 results.