cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003285 Period of continued fraction for square root of n (or 0 if n is a square).

Original entry on oeis.org

0, 1, 2, 0, 1, 2, 4, 2, 0, 1, 2, 2, 5, 4, 2, 0, 1, 2, 6, 2, 6, 6, 4, 2, 0, 1, 2, 4, 5, 2, 8, 4, 4, 4, 2, 0, 1, 2, 2, 2, 3, 2, 10, 8, 6, 12, 4, 2, 0, 1, 2, 6, 5, 6, 4, 2, 6, 7, 6, 4, 11, 4, 2, 0, 1, 2, 10, 2, 8, 6, 8, 2, 7, 5, 4, 12, 6, 4, 4, 2, 0, 1, 2, 2, 5, 10, 2, 6, 5, 2, 8, 8, 10, 16, 4, 4, 11, 4, 2, 0, 1, 2, 12
Offset: 1

Views

Author

Keywords

Comments

Any string of five consecutive terms m^2 - 2 through m^2 + 2 for m > 2 in the sequence has the corresponding periods 4,2,0,1,2. - Lekraj Beedassy, Jul 17 2001
For m > 1, a(m^2+m) = 2 and the continued fraction is m, 2, 2*m, 2, 2*m, 2, 2*m, ... - Arran Fernandez, Aug 14 2011
Apparently the generating function of the sequence for the denominators of continued fraction convergents to sqrt(n) is always rational and of form p(x)/[1 - C*x^m + (-1)^m * x^(2m)], or equivalently, the denominators satisfy the linear recurrence b(n+2m) = C*b(n+m) - (-1)^m * b(n), where a(n) is equal to m for each nonsquare n, or 0. See A006702 for the conjecture regarding C. The same conjectures apply to the sequences of the numerators of continued fraction convergents to sqrt(n). - Ralf Stephan, Dec 12 2013
If a(n)=1, n is of form k^2+1 (A002522 except the initial term 1). See A013642 for a(n)=2, A013643 for a(n)=3, A013644 for a(n)=4, A010337 for a(n)=5, A020347 for a(n)=6, A010338 for a(n)=7, A020348 for a(n)=8, A010339 for a(n)=9, and furthermore A020349-A020439. - Ralf Stephan, Dec 12 2013
From William Krier, Dec 12 2024: (Start)
a(m^2-4) = 4 for even m>=6 since sqrt(m^2-4) = [m-1; 1, (m-4)/2, 1, 2*(m-1)].
a(m^2-4) = 6 for odd m>=5 since sqrt(m^2-4) = [m-1; 1, (m-3)/2, 2, (m-3)/2, 1, 2*(m-1)].
a(m^2+4) = 2 for even m>=2 since sqrt(m^2+4) = [m; m/2, 2*m].
a(m^2+4) = 5 for odd m>=3 since sqrt(m^2+4) = [m; (m-1)/2, 1, 1, (m-1)/2, 2*m]. (End)

References

  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 197.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= n ->  if issqr(n) then 0
       else nops(numtheory:-cfrac(sqrt(n),'periodic','quotients')[2]) fi:
    map(f, [$1..100]); # Robert Israel, Sep 02 2015
  • Mathematica
    a[n_] := ContinuedFraction[Sqrt[n]] // If[Length[ # ] == 1, 0, Length[Last[ # ]]]&
    pcf[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Length[ContinuedFraction[s][[2]]]]]; Array[pcf,110] (* Harvey P. Dale, Jul 15 2017 *)
  • PARI
    a(n)=if(issquare(n),return(0));my(s=sqrt(n),x=s,f=floor(s),P=[0],Q=[1],k);while(1,k=#P;P=concat(P,f*Q[k]-P[k]);Q=concat(Q,(n-P[k+1]^2)/Q[k]);k++;for(i=1,k-1,if(P[i]==P[k]&&Q[i]==Q[k],return(k-i)));x=(P[k]+s)/Q[k];f=floor(x)) \\ Charles R Greathouse IV, Jul 31 2011
    
  • PARI
    isok(n, p) = {localprec(p); my(cf = contfrac(sqrt(n))); setsearch(Set(cf), 2*cf[1]);}
    a(n) = {if (issquare(n), 0, my(p=100); while (! isok(n, p), p+=100); localprec(p); my(cf = contfrac(sqrt(n))); for (k=2, #cf, if (cf[k] == 2*cf[1], return (k-1))););} \\ Michel Marcus, Jul 07 2021
    
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction_periodic
    def a(n):
        cfp = continued_fraction_periodic(0, 1, d=n)
        return 0 if len(cfp) == 1 else len(cfp[1])
    print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Aug 22 2021

A288186 Numbers k such that the continued fractions for sqrt(k) and sqrt(k+1) have the same period.

Original entry on oeis.org

11, 21, 32, 33, 38, 39, 78, 83, 91, 95, 104, 111, 115, 140, 141, 146, 147, 161, 164, 204, 205, 206, 219, 222, 227, 230, 242, 245, 299, 310, 320, 321, 326, 327, 340, 344, 371, 383, 395, 404, 413, 428, 434, 438, 443, 447, 451, 452, 464, 471, 498, 504, 515, 539, 545, 572, 573, 578, 579, 594, 596, 644, 654, 659, 695
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2017

Keywords

Comments

Numbers k such that A003285(k) = A003285(k+1).

Examples

			11 is in the sequence because sqrt(11) = 3 + 1/(3 + 1/(6 + 1/(3 + 1/(6 + 1/...)))), period 2: [3, 6] and sqrt(12) = 3 + 1/(2 + 1/(6 + 1/(2 + 1/(6 + 1/...)))), period  2: [2, 6].
		

Crossrefs

A098457 Farey Bisection Expansion of sqrt(7).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

John W. Layman, Sep 08 2004

Keywords

Comments

We define the Farey Bisection Expansion (FBE) of the nonnegative real number x to be the sequence {a(n)} of 0's and 1's determined as follows. Set na(0)=0, da(0)=1, nb(0)=1 and db(0)=0. For n=1, 2, 3,..., set num=na(n-1)+nb(n-1) and den=da(n-1)+db(n-1); if xA010121.

Examples

			G.f. = x + x^2 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^13 + x^14 + x^15 + ...
		

Crossrefs

Programs

  • Magma
    &cat [[1, 1, 0, 1, 0, 1, 1]^^20]; // Wesley Ivan Hurt, Jul 11 2016
    
  • Maple
    seq(op([1, 1, 0, 1, 0, 1, 1]), n=0..20); # Wesley Ivan Hurt, Jul 11 2016
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 1},{1, 1, 0, 1, 0, 1, 1},105] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    {a(n) = [1, 1, 0, 1, 0, 1, 1][(n-1)%7+1]}; /* Michael Somos, Dec 26 2016 */

Formula

From Wesley Ivan Hurt, Jul 11 2016: (Start)
G.f.: x * (1 + x + x^3 + x^5 + x^6) / (1 - x^7).
a(n) = a(n-7) for n>7.
a(n) = 1 - Sum_{k=1..4} floor((n + k)/7)*(-1)^k. (End)
a(n+1) = (-1)^(mod(mod(n, 7), 3)>0) * A131372(n). - Michael Somos, Dec 26 2016

A288184 Least odd number k such that the continued fraction for sqrt(k) has period n.

Original entry on oeis.org

5, 3, 41, 7, 13, 19, 73, 31, 113, 43, 61, 103, 193, 179, 109, 133, 157, 139, 337, 151, 181, 253, 853, 271, 457, 211, 949, 487, 821, 379, 601, 463, 613, 331, 1061, 1177, 421, 619, 541, 589, 1117, 571, 1153, 823, 1249, 739, 1069, 631, 1021, 1051, 1201, 751
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2017

Keywords

Examples

			a(2) = 3, sqrt(3) = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/...)))), period 2: [1, 2].
		

Crossrefs

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A288184(n):
        d = 1
        while True:
            s = continued_fraction_periodic(0,1,d)[-1]
            if isinstance(s, list) and len(s) == n:
                return d
            d += 2 # Chai Wah Wu, Jun 07 2017

Formula

A003285(a(n)) = n, A000035(a(n)) = 1.

A288185 Least even number k such that the continued fraction for sqrt(k) has period n.

Original entry on oeis.org

2, 6, 130, 14, 74, 22, 58, 44, 106, 86, 298, 46, 746, 134, 1066, 94, 1018, 424, 922, 268, 394, 166, 586, 382, 1306, 214, 1354, 334, 1642, 436, 2122, 508, 1114, 454, 4138, 478, 3194, 1108, 4874, 526, 3418, 724, 2458, 604, 9914, 694, 4618, 844, 2746, 1318
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2017

Keywords

Examples

			a(2) = 6, sqrt(6) = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + 1/...)))), period 2: [2, 4].
		

Crossrefs

Programs

  • Python
    from sympy import continued_fraction_periodic
    def A288185(n):
        d = 2
        while True:
            s = continued_fraction_periodic(0,1,d)[-1]
            if isinstance(s, list) and len(s) == n:
                return d
            d += 2 # Chai Wah Wu, Jun 08 2017

Formula

A003285(a(n)) = n, A000035(a(n)) = 0.

A098458 Periods of the Farey Bisection Expansions (FBE) of Sqrt[n], for n=1,2,3,...

Original entry on oeis.org

1, 4, 3, 1, 8, 6, 7, 5, 1, 12, 9, 8, 20, 10, 7, 1, 16, 12, 17, 10, 14, 18, 13, 9, 1, 20, 15, 18, 32, 12, 25, 13, 14, 16, 11, 1, 24, 18, 16, 15, 32, 14, 29, 20, 20, 34, 19, 13, 1, 28
Offset: 1

Views

Author

John W. Layman, Sep 08 2004

Keywords

Comments

See A098457 for the definition of the Farey Bisection Expansion.

Examples

			The FBE of Sqrt[7] is {1,1,0,1,0,1,1,1,1,0,1,0,1,1,1,1,0,1,0,1,1,..
with period 7. Thus a(7)=7.
		

Crossrefs

Showing 1-6 of 6 results.