cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005774 Number of directed animals of size n (k=1 column of A038622); number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, where s(0) = 2; also sum of row n+1 of array T in A026323.

Original entry on oeis.org

0, 1, 3, 9, 26, 75, 216, 623, 1800, 5211, 15115, 43923, 127854, 372749, 1088283, 3181545, 9312312, 27287091, 80038449, 234988827, 690513030, 2030695569, 5976418602, 17601021837, 51869858544, 152951628725, 451271872701, 1332147482253
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n+1 edges, having root degree at least 2 and nonroot outdegrees at most 2. - Emeric Deutsch, Aug 02 2002
From Petkovsek's algorithm, this recurrence does not have any closed form solutions. So there is no hypergeometric closed form for a(n). - Herbert S. Wilf
Sum of two consecutive trinomial coefficients starting two positions before central one. Example: a(4) = 10+16 and (1 + x + x^2)^4 = ... + 10*x^2 + 16*x^3 + 19*x^4 + ... - David Callan, Feb 07 2004
Image of n (A001477) under the Motzkin related matrix A107131. Binomial transform of A037952. - Paul Barry, May 12 2005
a(n) = total number of ascents (maximal runs of consecutive upsteps) in all Motzkin (n+1)-paths. For example, the 9 Motzkin 4-paths are FFFF, FFUD, FUDF, FUFD, UDFF, UDUD, UFDF, UFFD, UUDD and they contain a total of 9 ascents and so a(3)=9 (U=upstep, D=downstep, F=flatstep). - David Callan, Aug 16 2006
Image of the sequence (0,1,2,3,3,3,...) under the array A122896. - Paul Barry, Sep 18 2006
This is some kind of Motzkin transform of A079978 because the substitution x-> x*A001006(x) in the independent variable of the g.f. A079978(x) yields 1,0 followed by this sequence here. - R. J. Mathar, Nov 08 2008

Examples

			G.f.: x + 3*x^2 + 9*x^3 + 26*x^4 + 75*x^5 + 216*x^6 + 623*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005774 0 = 0
    a005774 n = a038622 n 1 -- Reinhard Zumkeller, Feb 26 2013
  • Maple
    seq( add(binomial(i,k+1)*binomial(i-k,k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
    seq(simplify(GegenbauerC(n-2,-n,-1/2) + GegenbauerC(n-1,-n,-1/2)), n=0..27); # Peter Luschny, May 12 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[1-2x-3x^2])/(x(1-3x+Sqrt[1-2x-3x^2])),{x,0,30}],x] (* Harvey P. Dale, Sep 20 2011 *)
    RecurrenceTable[{a[0]==0, a[1]==1,a[n]==(2n(n+1)a[n-1]+3n(n-1)a[n-2])/ ((n+2)(n-1))},a,{n,30}] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    s=[0,1]; {A005774(n)=k=(2*(n+2)*(n+1)*s[2]+3*(n+1)*n*s[1])/((n+3)*n); s[1]=s[2]; s[2]=k; k}
    
  • PARI
    {a(n) = if( n<2, n>0, (2 * (n+1) * n *a(n-1) + 3 * (n-1) * n * a(n-2)) / (n+2) / (n-1))}; /* Michael Somos, May 01 2003 */
    

Formula

Inverse binomial transform of [ 0, 1, 5, 21, 84, ... ] (A002054). - John W. Layman
D-finite with recurrence (n+2)*(n-1)*a(n) = 2*n*(n+1)*a(n-1) + 3*n*(n-1)*a(n-2) for all n in Z. - Michael Somos, May 01 2003
E.g.f.: exp(x)*(BesselI(1, 2*x)+BesselI(2, 2*x)). - Vladeta Jovovic, Jan 01 2004
G.f.: (1-x-sqrt(1-2x-3x^2))/(x(1-3x+sqrt(1-2x-3x^2))); a(n)= Sum_{k=0..n} C(k+1, n-k+1)*C(n, k)*k/(k+1); a(n) = Sum_{k=0..n} C(n, k)*C(k, floor((k-1)/2)). - Paul Barry, May 12 2005
Starting (1, 3, 9, 26, ...) = binomial transform of A026010: (1, 2, 4, 7, 14, 25, 50, 91, ...). - Gary W. Adamson, Oct 22 2007
a(n)*(2+n) = (4+4*n)*a(n-1) - n*a(n-2) + (12-6*n)*a(n-3). - Simon Plouffe, Feb 09 2012
a(n) ~ 3^(n+1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Mar 10 2014
0 = a(n)*(+36*a(n+1) + 18*a(n+2) - 96*a(n+3) + 30*a(n+4)) + a(n+1)*(-6*a(n+1) + 49*a(n+2) - 26*a(n+3) + 3*a(n+4)) + a(n+2)*(+15*a(n+3) - 8*a(n+4)) + a(n+3)*(a(n+4)) if n >= 0. - Michael Somos, Aug 06 2014
a(n) = GegenbauerC(n-2,-n,-1/2) + GegenbauerC(n-1,-n,-1/2). - Peter Luschny, May 12 2016

Extensions

Further descriptions from Clark Kimberling

A098493 Triangle T(n,k) read by rows: difference between A098489 and A098490 at triangular rows.

Original entry on oeis.org

1, 0, -1, -1, -1, 1, -1, 1, 2, -1, 0, 3, 0, -3, 1, 1, 2, -5, -2, 4, -1, 1, -2, -7, 6, 5, -5, 1, 0, -5, 0, 15, -5, -9, 6, -1, -1, -3, 12, 9, -25, 1, 14, -7, 1, -1, 3, 15, -18, -29, 35, 7, -20, 8, -1, 0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1, 1, 4, -22, -24, 85, 14, -112, 42
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Comments

Also, coefficients of polynomials that have values in A098495 and A094954.

Examples

			Triangle begins:
   1;
   0, -1;
  -1, -1, 1;
  -1,  1, 2, -1;
   0,  3, 0, -3, 1;
  ...
		

Crossrefs

Columns include A010892, -A076118. Diagonals include A033999, A038608, (-1)^n*A000096. Row sums are in A057077.
Cf. A098494 (diagonal polynomials), A085478, A244419.

Programs

  • Maple
    A098493 := proc (n, k)
    add((-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), j = k..n);
    end proc:
    seq(seq(A098493(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
  • PARI
    T(n,k)=if(k>n||k<0||n<0,0,if(k>=n-1,(-1)^n*if(k==n,1,-k),if(n==1,0,if(k==0,T(n-1,0)-T(n-2,0),T(n-1,k)-T(n-2,k)-T(n-1,k-1)))))

Formula

T(n, k) = A098489[n(n+1)/2, k] - A098490[n(n+1)/2, k].
Recurrence: T(n, k) = T(n-1, k)-T(n-1, k-1)-T(n-2, k); T(n, k)=0 for n<0, k>n, k<0; T(n, n)=(-1)^n; T(n, n-1)=(-1)^n*(1-n).
G.f.: (1-x)/(1+(y-1)*x+x^2). [Vladeta Jovovic, Dec 14 2009]
From Peter Bala, Jul 13 2021: (Start)
Riordan array ( (1 - x)/(1 - x + x^2), -x/(1 - x + x^2) ).
T(n,k) = (-1)^k * the (n,k)-th entry of Q^(-1)*P = Sum_{j = k..n} (-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), where P denotes Pascal's triangle A007318 and Q denotes triangle A061554 (formed from P by sorting the rows into descending order). (End)
From Peter Bala, Jun 26 2025: (Start)
n-th row polynomial R(n, x) = Sum_{k = 0..n} (-1)^k * binomial(n+k, 2*k) * (1 + x)^k.
R(n, 2*x + 1) = (-1)^n * Dir(n, x), where Dir(n,x) denotes the n-th row polynomial of the triangle A244419.
R(n, -1 - x) = b(n, x), where b(n, x) denotes the n-th row polynomial of the triangle A085478. (End)
Showing 1-2 of 2 results.