cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098704 Decimal form of the binary numbers 10, 100010, 1000100010, 10001000100010, 100010001000100010,...

Original entry on oeis.org

2, 34, 546, 8738, 139810, 2236962, 35791394, 572662306, 9162596898, 146601550370, 2345624805922, 37529996894754, 600479950316066, 9607679205057058, 153722867280912930, 2459565876494606882
Offset: 2

Views

Author

Simone Severini, Oct 26 2004

Keywords

Comments

Decimal form of the hexadecimal numbers 2, 22, 222, 2222, 22222, 222222, ...; e.g., 2*16^0 + 2*16^1 = 2 + 32 = 34. - Zerinvary Lajos, Feb 01 2007
For n>0: A131852(a(n+1))=n and ABS(A131852(m))A131865(n-2). - Reinhard Zumkeller, Jul 22 2007
Third quadrisection of A115451. - Klaus Purath, Mar 14 2021

Programs

  • Mathematica
    s=0;lst={};Do[s+=2^n;AppendTo[lst, s], {n, 1, 2*5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 07 2008 *)
    FromDigits[#,2]&/@Table[Join[PadRight[{},4n,{1,0,0,0}],{1,0}],{n,0,20}] (* Harvey P. Dale, Apr 06 2020 *)
  • PARI
    for(n=0,20,print(2*sum(k=0,n,2^(4*k))))
    for(k=0,20,print(2*(1-16^(k+1))/-15))

Formula

lim_{n -> infinity} a(n)/a(n-k) = 2^(4*(n-k)).
2*Sum_{k=0..n} 16^k = 2*(16^(n+1) - 1)/15.
From Klaus Purath, Mar 14 2021: (Start)
a(n) = (2^(4*n-3)-2)/15.
a(n) = 17*a(n-1) - 16*a(n-2).
a(n) = 16*a(n-1) + 2.
a(n) = 2*16^(n-2) + a(n-1).
a(n) = 2*A131865(n-2). (End)

Extensions

More terms from Ray Chandler, Nov 02 2004
More terms from Vladimir Joseph Stephan Orlovsky, Nov 07 2008