cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099453 Expansion of 1/(1 - 7*x + 11*x^2).

Original entry on oeis.org

1, 7, 38, 189, 905, 4256, 19837, 92043, 426094, 1970185, 9104261, 42057792, 194257673, 897167999, 4143341590, 19134543141, 88365044497, 408075336928, 1884511869029, 8702754376995, 40189650079646, 185597252410577, 857094615997933, 3958092535469184, 18278606972307025
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

Associated to the knot 8_12 by the modified Chebyshev transform A(x)-> (1/(1+x^2)^2)*A(x/(1+x^2)). See A099454 and A099455.

Crossrefs

Programs

  • GAP
    a:=[1,7];; for n in [3..30] do a[n]:=7*a[n-1]-11*a[n-2]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    I:=[1,7]; [n le 2 select I[n] else 7*Self(n-1) -11*Self(n-2): n in [1..30]]; // G. C. Greubel, May 21 2019
    
  • Mathematica
    LinearRecurrence[{7,-11}, {1,7}, 30] (* G. C. Greubel, May 21 2019 *)
  • PARI
    Vec(1/(1-7*x+11*x^2) + O(x^30)) \\ Michel Marcus, Sep 09 2017
    
  • Sage
    [lucas_number1(n,7,11) for n in range(1, 30)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-11)^k*7^(n-2k).
a(n) = ((7+sqrt(5))^n - (7-sqrt(5))^n)/(2^n*sqrt(5)), n > 0. Binomial transform of A030191 (Scaled Chebyshev U-polynomial evaluated at sqrt(5)/2); 3rd binomial transform of Fibonacci(n). - Creighton Dement, Apr 19 2005
a(n) = 7*a(n-1) - 11*a(n-2), n >= 2. - Vincenzo Librandi, Mar 18 2011
E.g.f.: exp(7*x/2)*(5*cosh(sqrt(5)*x/2) + 7*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, May 13 2024

A099455 An Alexander sequence for the knot 8_12.

Original entry on oeis.org

1, 7, 36, 168, 755, 3346, 14747, 64848, 284892, 1251103, 5493314, 24118255, 105887532, 464877504, 2040939083, 8960260498, 39337870403, 172703402424, 758212386132, 3328747303735, 14614056052994, 64159460722903, 281676515111412, 1236632261449368, 5429133302704547
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is a parameterization of the Alexander polynomial for the knot 8_12. 1/(1-7*x+13*x^2-7*x^3+x^4) is the image of the g.f. of A099453 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)).

Crossrefs

Cf. A099454.

Programs

  • Mathematica
    LinearRecurrence[{7,-13,7,-1},{1,7,36,168,755},30] (* Harvey P. Dale, Jan 31 2017 *)

Formula

G.f.: (1-x)*(1+x)*(1+x^2)/(1-7*x+13*x^2-7*x^3+x^4). - corrected Nov 24 2012
a(n) = A099454(n) - A099454(n-2).
Showing 1-2 of 2 results.