A099578 a(n) = binomial(floor((3n+2)/2), floor(n/2)).
1, 1, 4, 5, 21, 28, 120, 165, 715, 1001, 4368, 6188, 27132, 38760, 170544, 245157, 1081575, 1562275, 6906900, 10015005, 44352165, 64512240, 286097760, 417225900, 1852482996, 2707475148, 12033222880, 17620076360, 78378960360, 114955808528
Offset: 0
Examples
From _Petros Hadjicostas_, Jul 19 2018: (Start) With n=2 there are a(2-2) = a(0) = 1 compositions of 2-1 = 1 into floor(2/2) = 1 nonnegative parts, namely 1 (only). With n=3 there are a(3-2) = a(1) = 1 compositions of 3-1 = 2 into floor(3/2) = 1 nonnegative parts, namely 2 (only). With n=4 there are a(4-2) = a(2) = 4 compositions of 4-1 = 3 into floor(4/2) = 2 nonnegative parts, namely 0+3, 3+0, 1+2, and 2+1. With n=5 there are a(5-2) = a(3) = 5 compositions of 5-1 = 4 into floor(5/2) = 2 nonnegative parts, namely 0+4, 4+0, 1+3, 3+1, and 2+2. With n=6 there are a(6-2) = a(4) = 21 compositions of 6-1 = 5 into floor(6/2) = 3 nonnegative parts, namely the 3 permutations of 1+1+3, the 3 permutations of 1+2+2, the 3 permutations of 0+0+5, the 6 permutations of 0+1+4, and the 6 permutations of 0+2+3. (End)
Links
- T. D. Noe, Table of n, a(n) for n=0..200
Programs
-
Magma
[(&+[Binomial(n+j, j): j in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Jul 24 2022
-
Maple
A099578:=n->binomial(floor((3*n+2)/2), floor(n/2)); seq(A099578(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013
-
Mathematica
Table[Binomial[Floor[(3n+2)/2], Floor[n/2]], {n, 0, 50}] (* Wesley Ivan Hurt, Nov 01 2013 *) CoefficientList[Series[-((Sqrt[4 -27 x^2] -2(Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]] + Sqrt[3] Sin[2/3 ArcSin[(3 Sqrt[3] x)/2]]))/(3 x Sqrt[4 -27 x^2])), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *) a[n_] := Binomial[2*n+1, n]*Hypergeometric2F1[-n, n+1, -2*n-1, -1]; Flatten[Table[a[n], {n, 0, 29}]] (* Detlef Meya, Dec 25 2023 *)
-
PARI
a(n) = binomial((3*n+2)\2, n\2); \\ Michel Marcus, Nov 02 2013
-
SageMath
[binomial((3*n+2)//2, n//2) for n in (0..40)] # G. C. Greubel, Jul 24 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k, k).
40*n*(n+1)*a(n) +36*n*(n-2)*a(n-1) -6*(45*n^2-23)*a(n-2) -27*(3*n-4)*(3*n-5)*a(n-3) = 0. - R. J. Mathar, Oct 30 2014
From Benedict W. J. Irwin, Aug 15 2016: (Start)
G.f.: -( (sqrt(4-27*x^2) - 2*(cos(arcsin(3*sqrt(3)*x/2)/3) + sqrt(3)*sin(2*arcsin(3*sqrt(3)*x/2)/3)) )/( 3*x*sqrt(4-27*x^2)) ).
E.g.f.: Hypergeometric2F3(2/3,4/3;1/2,1,3/2;27*x^2/16) + x*Hypergeometric2F3(4/3,5/3;3/2,3/2,2;27*x^2/16).
(End)
Recurrence: 4*n*(n+1)*(6*n-1)*a(n) = 18*n*a(n-1) + 3*(3*n-2)*(3*n-1)*(6*n+5)*a(n-2). - Vaclav Kotesovec, Aug 15 2016
a(n) = binomial(2*n+1, n)*hypergeom([-n, n+1], [-2*n-1], -1). - Detlef Meya, Dec 25 2023
Comments