A306914
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 6, 0, 0, 1, 5, 10, 9, -4, 0, 1, 6, 15, 20, 9, -8, 0, 1, 7, 21, 35, 34, 0, -8, 0, 1, 8, 28, 56, 70, 48, -27, 0, 0, 1, 9, 36, 84, 126, 125, 48, -81, 16, 0, 1, 10, 45, 120, 210, 252, 200, 0, -162, 32, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 3, 4, 5, 6, 7, 8, ...
0, 2, 6, 10, 15, 21, 28, 36, ...
0, 0, 9, 20, 35, 56, 84, 120, ...
0, -4, 9, 34, 70, 126, 210, 330, ...
0, -8, 0, 48, 125, 252, 462, 792, ...
0, -8, -27, 48, 200, 461, 924, 1716, ...
0, 0, -81, 0, 275, 780, 1715, 3432, ...
0, 16, -162, -164, 275, 1209, 2989, 6434, ...
-
A[n_, k_] := SeriesCoefficient[1/((1-x)^k + x^k), {x, 0, n}];
Table[A[n-k+1, k], {n, 0, 11}, {k, n+1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)
A099586
Constant term in (1+x)^n mod (1+x^4).
Original entry on oeis.org
1, 1, 1, 0, -4, -14, -34, -68, -116, -164, -164, 0, 560, 1912, 4616, 9232, 15760, 22288, 22288, 0, -76096, -259808, -627232, -1254464, -2141504, -3028544, -3028544, 0, 10340096, 35303296, 85229696, 170459392, 290992384, 411525376, 411525376, 0, -1405035520
Offset: 1
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- Colin Barker, Table of n, a(n) for n = 1..1000
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Vladimir Shevelev, Coefficient of x^k in ((x+1)^n modulo x^N+1), seqfan, Thu Jul 20 2017.
- Gregory Tollisen and Tamás Lengyel, A congruential identity and the 2-adic order of lacunary sums of binomial coefficients, Integers 4 (2004), #A4.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-2).
-
seq(eval(rem((1+x)^n, 1+x^4,x),x=0),n=1..40); # Robert Israel, Jul 03 2017
-
RecurrenceTable[{a[n] == 4 * a[n - 1] - 6 * a[n - 2] + 4 * a[n - 3] - 2 * a[n - 4], a[1] = 1, a[2] = 1, a[3] = 1, a[4] = 0}, a, {n, 50}] (* G. C. Greubel, Nov 10 2015 *)
a[n_] := HypergeometricPFQ[{(1-n)/4, (2-n)/4, (3-n)/4, -n/4}, {1/4, 1/2, 3/4}, -1]; Array[a, 40] (* Jean-François Alcover, Jul 20 2017, from Vladimir Shevelev's first formula *)
-
a(n) = polcoeff(((1+x)^n)%(x^4+1),0)
-
Vec(-x*(2*x-1)*(x^2-x+1)/(2*x^4-4*x^3+6*x^2-4*x+1) + O(x^100)) \\ Colin Barker, Nov 08 2015
-
a(n) = real(([1,1; I,1])^n)[1,1]; \\ Michel Marcus, Nov 08 2015
A099587
a(n) = coefficient of x in (1+x)^n mod (1+x^4).
Original entry on oeis.org
0, 1, 2, 3, 4, 4, 0, -14, -48, -116, -232, -396, -560, -560, 0, 1912, 6528, 15760, 31520, 53808, 76096, 76096, 0, -259808, -887040, -2141504, -4283008, -7311552, -10340096, -10340096, 0, 35303296, 120532992, 290992384, 581984768
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Vladimir Shevelev, Coefficient of x^k in ((x+1)^n modulo x^N+1), seqfan, Thu Jul 20 2017.
- G. Tollisen and T. Lengyel, A Congruential Identity and the 2-adic Order of Lacunary Sums of Binomial Coefficients, Integers 4 (2004), #A4.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-2).
-
RecurrenceTable[{a[1]=1, a[2]=2, a[3]=3, a[4]=4, a[n] = 4*a[n-1] - 6*a[n-2] + 4*a[n-3] - 2*a[n-4]}, a, {n, 1, 100}] (* G. C. Greubel, Nov 09 2015 *)
a[n_] := n*HypergeometricPFQ[{(1-n)/4, (2-n)/4, (3-n)/4, (4-n)/4}, {1/2, 3/4, 5/4}, -1]; Array[a, 40, 0] (* Jean-François Alcover, Jul 20 2017, from Vladimir Shevelev's first formula *)
LinearRecurrence[{4,-6,4,-2},{0,1,2,3},50] (* Harvey P. Dale, Mar 27 2022 *)
-
a(n) = polcoeff(((1+x)^n)%(x^4+1),1)
A099588
Coefficient of x^2 in (1+x)^n mod 1+x^4.
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 14, 14, 0, -48, -164, -396, -792, -1352, -1912, -1912, 0, 6528, 22288, 53808, 107616, 183712, 259808, 259808, 0, -887040, -3028544, -7311552, -14623104, -24963200, -35303296, -35303296, 0, 120532992, 411525376, 993510144, 1987020288, 3392055808, 4797091328, 4797091328
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Vladimir Shevelev, Coefficient of x^k in ((x+1)^n modulo x^N+1), seqfan, Thu Jul 20 2017.
- G. Tollisen and T. Lengyel, A congruential identity and the 2-adic order of lacunary sums of binomial coefficients, Integers 4 (2004), #A4.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-2).
-
f:= rectoproc({rec, a(0)=0,a(1)=0,a(2)=1,a(3)=3},a(n),remember):
map(f, [$0..100]); # Robert Israel, Jun 30 2017
-
RecurrenceTable[{a[n]==4*a[n-1] - 6*a[n-2] + 4*a[n-3] - 2*a[n-4], a[1]=0, a[2]=1, a[3]=3, a[4]=6}, a, {n, 1, 200}] (* G. C. Greubel, Nov 10 2015 *)
Table[Sum[(-1)^k*Binomial[n, 4 k + 2], {k, 0, n}], {n, 0, 36}] (* Michael De Vlieger, Jun 30 2017 *)
a[n_] := n*(n-1)/2 HypergeometricPFQ[{(2-n)/4, (3-n)/4, (4-n)/4, (5-n)/4}, {3/4, 5/4, 3/2}, -1]; Array[a, 40, 0] (* Jean-François Alcover, Jul 20 2017, from Vladimir Shevelev's first formula *)
-
x='x+O('x^55); concat([0, 0], Vec(-x^2*(x-1)/(2*x^4-4*x^3+6*x^2-4*x+1))) \\ Altug Alkan, Nov 11 2015
-
a(n) = sum(t=0, (n-2)\4, (-1)^t*binomial(n,4*t+2)); \\ Michel Marcus, Jun 30 2017
-
a(n)=polcoeff(lift(Mod(1+x,1+x^4)^n),2); \\ Joerg Arndt, Feb 22 2018
A307394
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 4, 4, 4, 4, 4, 4, 4, ...
6, 9, 10, 10, 10, 10, 10, 10, 10, ...
10, 14, 19, 20, 20, 20, 20, 20, 20, ...
15, 15, 28, 34, 35, 35, 35, 35, 35, ...
21, 8, 28, 48, 55, 56, 56, 56, 56, ...
28, -7, 1, 48, 75, 83, 84, 84, 84, ...
36, -22, -80, 0, 75, 110, 119, 120, 120, ...
45, -21, -242, -164, 0, 110, 154, 164, 165, ...
-
T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
A290286
Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3.
Original entry on oeis.org
1, 0, 0, 0, -1008, -37120, -473600, 0, 63996160, 702013440, 2893578240, 0, -393379835904, -12971004067840, -160377313820672, 0, 21792325059543040, 239501351489372160, 987061897553510400, 0, -134124249770961666048, -4422152303189489090560
Offset: 0
-
seq(LinearAlgebra:-Determinant(Matrix(4,shape=Circulant[seq((-1)^j*
add((-1)^k*binomial(n, 4*k+j),k=0..n/4),j=0..3)])),n=0..50); # Robert Israel, Jul 26 2017
-
ro[n_] := Table[Sum[(-1)^(j+k) Binomial[n, 4k+j], {k, 0, n/4}], {j, 0, 3}];
M[n_] := Table[RotateRight[ro[n], m], {m, 0, 3}];
a[n_] := Det[M[n]];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
-
from sympy.matrices import Matrix
from sympy import binomial
def mj(j, n): return (-1)**j*sum((-1)**k*binomial(n, 4*k + j) for k in range(n//4 + 1))
def a(n):
m=Matrix(4, 4, lambda i,j: mj((i-j)%4,n))
return m.det()
print([a(n) for n in range(22)]) # Indranil Ghosh, Jul 31 2017
Showing 1-6 of 6 results.
Comments