cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099754 a(n) = (3^n +1)/2 + 2^n.

Original entry on oeis.org

2, 4, 9, 22, 57, 154, 429, 1222, 3537, 10354, 30549, 90622, 269817, 805354, 2407869, 7207222, 21588897, 64701154, 193972389, 581655022, 1744440777, 5232273754, 15694724109, 47079978022, 141231545457, 423677859154, 1271000023029
Offset: 0

Views

Author

Miklos Kristof, Nov 11 2004

Keywords

Comments

Let b(0)=1, b(n) = A005578(n-1) = {1,1,2,3,6,11,22,43,86,171,342, ...} then a(n) = Sum_{k=0..n+1} C(n+1,k)*b(k).
Binomial transform of A135351. - R. J. Mathar, Aug 05 2009

Examples

			a(6) = (3^6+1)/2 + 2^6 = 365+64 = 429.
a(6) = 1 + 7*1 + 21*1 + 35*2 + 35*3 + 21*6 + 7*11 + 1*22 = 429.
		

Crossrefs

Cf. A005578.

Programs

  • GAP
    List([0..30], n-> (3^n +2^(n+1) +1)/2); # G. C. Greubel, Sep 03 2019
  • Magma
    [(3^n +2^(n+1) +1)/2: n in [0..30]]; // G. C. Greubel, Sep 03 2019
    
  • Maple
    seq((3^n +2^(n+1) +1)/2, n=0..30); # G. C. Greubel, Sep 03 2019
  • Mathematica
    Table[(3^n +2^(n+1) +1)/2, {n,0,30}] (* G. C. Greubel, Sep 03 2019 *)
    LinearRecurrence[{6,-11,6},{2,4,9},30] (* Harvey P. Dale, May 23 2021 *)
  • PARI
    a(n) = (3^n+1)/2 + 2^n; \\ Michel Marcus, Aug 15 2013
    
  • Sage
    [(3^n +2^(n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Sep 03 2019
    

Formula

a(n) = (3^n + 2^(n+1) + 1)/2.
G.f.: (2-8*x+7*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Jaume Oliver Lafont, Mar 06 2009
a(n) = A007051(n) + A000079(n). - Michel Marcus, Aug 15 2013
E.g.f.: (exp(x) + 2*exp(2*x) + exp(3*x))/2. - G. C. Greubel, Sep 03 2019

Extensions

Corrected and extended by T. D. Noe, Nov 07 2006