A099754 a(n) = (3^n +1)/2 + 2^n.
2, 4, 9, 22, 57, 154, 429, 1222, 3537, 10354, 30549, 90622, 269817, 805354, 2407869, 7207222, 21588897, 64701154, 193972389, 581655022, 1744440777, 5232273754, 15694724109, 47079978022, 141231545457, 423677859154, 1271000023029
Offset: 0
Examples
a(6) = (3^6+1)/2 + 2^6 = 365+64 = 429. a(6) = 1 + 7*1 + 21*1 + 35*2 + 35*3 + 21*6 + 7*11 + 1*22 = 429.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Yilmaz Simsek, New families of special numbers for computing negative order Euler numbers, arXiv:1604.05601 [math.NT], 2016.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A005578.
Programs
-
GAP
List([0..30], n-> (3^n +2^(n+1) +1)/2); # G. C. Greubel, Sep 03 2019
-
Magma
[(3^n +2^(n+1) +1)/2: n in [0..30]]; // G. C. Greubel, Sep 03 2019
-
Maple
seq((3^n +2^(n+1) +1)/2, n=0..30); # G. C. Greubel, Sep 03 2019
-
Mathematica
Table[(3^n +2^(n+1) +1)/2, {n,0,30}] (* G. C. Greubel, Sep 03 2019 *) LinearRecurrence[{6,-11,6},{2,4,9},30] (* Harvey P. Dale, May 23 2021 *)
-
PARI
a(n) = (3^n+1)/2 + 2^n; \\ Michel Marcus, Aug 15 2013
-
Sage
[(3^n +2^(n+1) +1)/2 for n in (0..30)] # G. C. Greubel, Sep 03 2019
Formula
a(n) = (3^n + 2^(n+1) + 1)/2.
G.f.: (2-8*x+7*x^2)/((1-x)*(1-2*x)*(1-3*x)). - Jaume Oliver Lafont, Mar 06 2009
E.g.f.: (exp(x) + 2*exp(2*x) + exp(3*x))/2. - G. C. Greubel, Sep 03 2019
Extensions
Corrected and extended by T. D. Noe, Nov 07 2006
Comments