cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A254028 a(n) = 2^(n+1) + 3^n + 3.

Original entry on oeis.org

6, 10, 20, 46, 116, 310, 860, 2446, 7076, 20710, 61100, 181246, 539636, 1610710, 4815740, 14414446, 43177796, 129402310, 387944780, 1163310046, 3488881556, 10464547510, 31389448220, 94159956046, 282463090916, 847355718310
Offset: 0

Views

Author

Luciano Ancora, Jan 22 2015

Keywords

Comments

This is the sequence of third terms of "second partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[2^(n+1)+3^n+3,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{6,10,20},30] (* Harvey P. Dale, Mar 27 2025 *)
  • PARI
    a(n)=2<Charles R Greathouse IV, Jan 23 2015
    
  • PARI
    Vec(-2*(13*x^2-13*x+3)/((x-1)*(2*x-1)*(3*x-1)) + O(x^100)) \\ Colin Barker, Jan 24 2015

Formula

G.f.: -2*(13*x^2-13*x+3) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 24 2015
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - Colin Barker, Jan 24 2015
a(n) = A085279(n+1) = 2*( A099754(n)+1 ) = 2*( A094374(n)-2 ). [Bruno Berselli, Jan 26 2015]

A298119 Array read by antidiagonals: T(m,n) = number of Eulerian orientations of the torus grid graph C_m X C_n.

Original entry on oeis.org

4, 8, 8, 16, 18, 16, 32, 44, 44, 32, 64, 114, 148, 114, 64, 128, 308, 548, 548, 308, 128, 256, 858, 2116, 2970, 2116, 858, 256, 512, 2444, 8324, 16892, 16892, 8324, 2444, 512, 1024, 7074, 33028, 98466, 143224, 98466, 33028, 7074
Offset: 1

Views

Author

Andrew Howroyd, Jan 12 2018

Keywords

Comments

In other words, the number of orientations of the m X n torus grid graph in which each vertex has equal indegree and outdegree.
Values are always even since reversing the orientation of each edge will always result in another Eulerian orientation.

Examples

			Array begins:
============================================================
m\n|   1    2     3      4        5         6          7
---|--------------------------------------------------------
1  |   4    8    16     32       64       128        256 ...
2  |   8   18    44    114      308       858       2444 ...
3  |  16   44   148    548     2116      8324      33028 ...
4  |  32  114   548   2970    16892     98466     583412 ...
5  |  64  308  2116  16892   143224   1250228   11091536 ...
6  | 128  858  8324  98466  1250228  16448400  220603364 ...
7  | 256 2444 33028 583412 11091536 220603364 4484823396 ...
...
		

Crossrefs

Main diagonal is A054759.
Rows 2..5 are 2*A099754, 2*A170938, A298201, A372093, A372094.

A135351 a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; or a(0) = 0 and for n > 0, a(n) = A005578(n-1) - (-1)^n.

Original entry on oeis.org

0, 2, 0, 3, 2, 7, 10, 23, 42, 87, 170, 343, 682, 1367, 2730, 5463, 10922, 21847, 43690, 87383, 174762, 349527, 699050, 1398103, 2796202, 5592407, 11184810, 22369623, 44739242, 89478487, 178956970, 357913943, 715827882, 1431655767, 2863311530, 5726623063, 11453246122, 22906492247, 45812984490
Offset: 0

Views

Author

Miklos Kristof, Dec 07 2007

Keywords

Comments

Partial sums of A155980 for n > 2. - Klaus Purath, Jan 30 2021

Crossrefs

Cf. A007583, A062092, A087289, A020988 (even bisection), A163834 (odd bisection), A078008, A084247, A181565.

Programs

  • GAP
    List([0..40], n-> (2^n+3-7*(-1)^n+3*0^n)/6); # G. C. Greubel, Sep 02 2019
  • Magma
    a135351:=func< n | (2^n+3-7*(-1)^n+3*0^n)/6 >; [ a135351(n): n in [0..32] ]; // Klaus Brockhaus, Dec 05 2009
    
  • Maple
    G(x):=x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)): f[0]:=G(x): for n from 1 to 30 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/n!,n=0..30);
  • Mathematica
    Join[{0}, Table[(2^n +3 -7*(-1)^n)/6, {n,40}]] (* G. C. Greubel, Oct 11 2016 *)
    LinearRecurrence[{2,1,-2},{0,2,0,3},40] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    a(n) = (2^n + 3 - 7*(-1)^n + 3*0^n)/6; \\ Michel Marcus, Oct 11 2016
    
  • Sage
    [(2^n+3-7*(-1)^n+3*0^n)/6 for n in (0..40)] # G. C. Greubel, Sep 02 2019
    

Formula

G.f.: x*(2 - 4*x + x^2)/((1-x^2)*(1-2*x)).
E.g.f.: (exp(2*x) + 3*exp(x) - 7*exp(-x) + 3)/6.
From Paul Curtz, Dec 20 2020: (Start)
a(n) + (period 2 sequence: repeat [1, -2]) = A328284(n+2).
a(n+1) + (period 2 sequence: repeat [-2, 1]) = A001045(n).
a(n+1) + (period 2 sequence: repeat [-1, 0]) = A078008(n).
a(n+1) + (period 2 sequence : repeat [-3, 2]) = -(-1)^n*A084247(n).
a(n+4) = a(n+1) + 7*A001045(n).
a(n+4) + a(n+1) = A181565(n).
a(2*n+2) + a(2*n+3) = A087289(n) = 3*A007583(n).
a(2*n+1) = A163834(n), a(2*n+2) = A020988(n). (End)

Extensions

First part of definition corrected by Klaus Brockhaus, Dec 05 2009
Showing 1-3 of 3 results.