cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099919 a(n) = F(3) + F(6) + F(9) + ... + F(3n), F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

0, 2, 10, 44, 188, 798, 3382, 14328, 60696, 257114, 1089154, 4613732, 19544084, 82790070, 350704366, 1485607536, 6293134512, 26658145586, 112925716858, 478361013020, 2026369768940, 8583840088782, 36361730124070, 154030760585064, 652484772464328, 2763969850442378
Offset: 0

Views

Author

Ralf Stephan, Oct 30 2004

Keywords

Comments

Partial sum of the even Fibonacci numbers. - Vladimir Joseph Stephan Orlovsky, Nov 28 2010

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 25.

Crossrefs

Partial sums of A014445.
Cf. A087635.
Case k = 3 of partial sums of fibonacci(k*n): A000071, A027941, A058038, A138134, A053606.

Programs

  • Magma
    [(Fibonacci(3*n+2) - 1)/2: n in [0..30]]; // G. C. Greubel, Jan 17 2018
  • Mathematica
    CoefficientList[Series[2 x/((1 - x) (1 - 4 x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
    LinearRecurrence[{5, -3, -1}, {0, 2, 10}, 30] (* G. C. Greubel, Jan 17 2018 *)
    Accumulate[Fibonacci[3Range[0, 19]]] (* Alonso del Arte, Dec 23 2018 *)
  • PARI
    a(n) = sum(i=1, n, fibonacci(3*i)); \\ Michel Marcus, Mar 15 2014
    
  • PARI
    a(n) = fibonacci(3*n+2)\2 \\ Charles R Greathouse IV, Jun 11 2015
    

Formula

a(n) = (Fibonacci(3*n + 2) - 1)/2 = (A015448(n+1)-1)/2.
G.f.: 2*x/((1 - x)*(1 - 4*x - x^2)).
a(n) = (F(3n + 2) - 1)/2 = 2 * A049652(n).
a(n) = Sum_{0 <= j <= i <= n} binomial(i, j)*F(i + j). - Benoit Cloitre, May 21 2005
From Gary Detlefs, Dec 08 2010: (Start)
a(n) = 4*a(n - 1) + a(n - 2) + 2, n > 1.
a(n) = 5*a(n - 1) - 3*a(n - 2) - a(n - 3), n > 2.
a(n) = (Fibonacci(3*n + 3) + Fibonacci(3*n) - 2)/4. (End)
a(n) = (-10 + (5 - 3*sqrt(5))*(2 - sqrt(5))^n + (2 + sqrt(5))^n*(5 + 3*sqrt(5)))/20. - Colin Barker, Nov 26 2016
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, Jun 03 2024

Extensions

a(0) = 0 prepended by Joerg Arndt, Mar 13 2014