A100484 The primes doubled; Even semiprimes.
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- D. D. Anderson and Andrea M. Frazier, On a general theory of factorization in integral domains, Rocky Mountain J. Math., Volume 41, Number 3 (2011), 663-705. See pp. 698, 699, 702.
- James Lanterman, Irreducibles in the Integers modulo n, arXiv:1210.2991 [math.NT], 2012.
- Eric Weisstein's World of Mathematics, Semiprime
Crossrefs
Programs
-
GAP
2*Filtered([1..300],IsPrime); # Muniru A Asiru, Oct 05 2018
-
GAP
List([1..70], n-> 2*Primes[n]); # G. C. Greubel, May 18 2019
-
Haskell
a100484 n = a100484_list !! (n-1) a100484_list = map (* 2) a000040_list -- Reinhard Zumkeller, Jan 31 2012
-
Magma
[2*p: p in PrimesUpTo(350)]; // Vincenzo Librandi, Mar 27 2014
-
Maple
A100484:=n->2*ithprime(n); seq(A100484(n), n=1..70); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
2*Prime[Range[70]] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
-
PARI
2*primes(70) \\ Charles R Greathouse IV, Aug 21 2011
-
Sage
[2*nth_prime(n) for n in (1..70)] # G. C. Greubel, May 18 2019
Formula
a(n) = 2 * A000040(n).
a(n) = A001747(n+1).
n>1: A000005(a(n)) = 4; A000203(a(n)) = 3*A008864(n); A000010(a(n)) = A006093(n); intersection of A001358 and A005843.
a(n) = A116366(n-1, n-1) for n>1. - Reinhard Zumkeller, Feb 06 2006
a(n) = A077017(n+1), n>1. - R. J. Mathar, Sep 02 2008
a(n) = A087112(n, 1). - Reinhard Zumkeller, Nov 25 2012
A000203(a(n)) = 3*n/2 + 3, n > 1. - Wesley Ivan Hurt, Sep 07 2013
Extensions
Simpler definition.
Comments