A100837
Numbers k such that k^k + 4 is prime.
Original entry on oeis.org
0, 1, 3, 7, 43, 2569
Offset: 1
Cf.
A100840 (corresponding primes).
-
For[n = 1, n < 1000, n++, If[ PrimeQ[n^n + 4], Print[n]]] (* Stefan Steinerberger, Apr 02 2006 *)
-
f1(n,a) = for(x=0,n,y=x^x+a;if(ispseudoprime(y),print1(y",")))
A100838
Numbers k such that k^k + 7 is prime.
Original entry on oeis.org
Cf.
A100841 (corresponding primes).
-
lst={};Do[p=n^n+7;If[PrimeQ[p],AppendTo[lst,n]],{n,2*5!}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 01 2009 *)
Select[Range[35],PrimeQ[#^#+7]&] (* Harvey P. Dale, Oct 27 2018 *)
-
f1(n,a) = for(x=0,n,y=x^x+a;if(ispseudoprime(y),print1(y",")))
A173974
Numbers k such that k^k+43 is prime.
Original entry on oeis.org
2, 8, 14, 26, 84, 574
Offset: 1
2^2 + 43 = 47, which is prime, so 2 is in the sequence.
-
f[n_]:=PrimeQ[n^n+43];lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst
-
is(n)=ispseudoprime(n^n+43) \\ Charles R Greathouse IV, Jun 13 2017
A300292
Numbers k such that k^k + 9 is a prime.
Original entry on oeis.org
A300976
Numbers k such that k^k - 5 is a prime.
Original entry on oeis.org
4, 104, 124, 728
Offset: 1
-
Select[Range[1000], PrimeQ[#^# - 5] &] (* Vaclav Kotesovec, Mar 25 2018 *)
-
isok(k) = ispseudoprime(k^k - 5); \\ Altug Alkan, Mar 17 2018
A300981
Numbers k such that k^k - 10 is a prime.
Original entry on oeis.org
-
Select[Range[1000], PrimeQ[#^# - 10] &] (* Vaclav Kotesovec, Mar 25 2018 *)
-
isok(k) = ispseudoprime(k^k - 10); \\ Altug Alkan, Mar 17 2018
A100842
Primes of the form k^k + 10.
Original entry on oeis.org
11, 37, 823553, 387420499, 112595147462071192539789448988889059930192105219196517009951969
Offset: 1
1^1 + 10 = 11, which is prime, so 11 is in the sequence.
3^3 + 10 = 27 + 10 = 37, which is also prime, so 37 is also in the sequence.
5^5 + 10 = 3125 + 10 = 3135 = 3 * 5 * 11 * 19, so 3135 is not in the sequence.
-
Select[Table[n^n + 10, {n, 100}], PrimeQ] (* Alonso del Arte, Aug 05 2019 *)
-
f1(n) = for(x=1,n,y=x^x+10;if(ispseudoprime(y),print1(y", ")))
A173975
Numbers k such that k^k + 115 is prime.
Original entry on oeis.org
6, 8, 18, 36, 38, 176
Offset: 1
-
f[n_]:=PrimeQ[n^n+115];lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst
-
is(n)=ispseudoprime(n^n+115) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-8 of 8 results.
Comments