cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A100889 Real part of the multiplier m of the multiperfect Gaussian integer A100884(n)+i*A100885(n).

Original entry on oeis.org

1, 2, -1, 2, -1, 2, -2, 1, -1, 0, -3, 1, -3, 0, -2, -4, -3, 1, -4, 2, 0, 3, 0, 1, 3, 3, 4, 3, 0, -1, 0, 5, 3, -5, 4, 0, 4, 0, 0, 0, -4
Offset: 1

Views

Author

Keywords

Comments

Let the Gaussian integer z = A100884(n)+i*A100885(n). Then a(n) = Re(m) = Re( sigma(z)/z) .

Crossrefs

Extensions

Edited, all values replaced by R. J. Mathar, Mar 12 2010
a(10)-a(41) from Amiram Eldar, Feb 10 2020

A100885 Imaginary part of the Gaussian multiperfect number associated with the real part A100884.

Original entry on oeis.org

0, 3, 2, 5, 10, 18, 12, 24, 88, 20, 84, 120, 32, 60, 209, 440, 418, 120, 950, 768, 310, 200, 1280, 1152, 2256, 3800, 600, 404, 3840, 1712, 1240, 4680, 5016, 6240, 11400, 12880, 1212, 3720, 20012, 1232, 61440
Offset: 1

Views

Author

Keywords

Examples

			a(1) = Im(z= 1) with sigma(z) = 1 and m = 1.
a(2) = Im(z= 1+3i) with sigma(z) = 5+5i and m = 2-i.
a(3) = Im(z= 6+2i) with sigma(z) = -10-10i and m = -1+2i.
a(4) = Im(z= 5+5i) with sigma(z) = 20i and m = 2+2i.
a(5) = Im(z= 10+10i) with sigma(z) = -40+20i and m = -1+3i.
a(6) = Im(z= 12+18i) with sigma(z) = -12+60i and m = 2+2i.
a(9) = Im(z= 28+88i) with sigma(z) = -204-32i and m = -1+2i.
		

Crossrefs

Extensions

Edited, all values replaced by R. J. Mathar, Mar 12 2010
a(10)-a(41) from Amiram Eldar, Feb 10 2020

A100883 Number of partitions of n in which the sequence of frequencies of the summands is nondecreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 19, 26, 36, 43, 64, 77, 102, 129, 169, 205, 268, 323, 413, 504, 629, 751, 947, 1131, 1384, 1661, 2024, 2393, 2919, 3442, 4136, 4884, 5834, 6836, 8162, 9531, 11262, 13155, 15493, 17981, 21138, 24472, 28571, 33066, 38475, 44305
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Comments

From Gus Wiseman, Jan 21 2019: (Start)
Also the number of semistandard Young tableaux where the rows are constant and the entries sum to n. For example, the a(8) = 19 tableaux are:
8 44 2222 11111111
.
1 2 11 3 111 22 1111 11 11111 1111 111111
7 6 6 5 5 4 4 33 3 22 2
.
1 1 11 111
2 3 2 2
5 4 4 3
(End)

Examples

			a(5) = 6 because, of the 7 unrestricted partitions of 5, only one, 2 + 2 + 1, has a decreasing sequence of frequencies. Two is used twice, but 1 is used only once.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i=1, `if`(n>=t, 1, 0), `if`(i=0, 0, b(n, i-1, t)+
           add(b(n-i*j, i-1, j), j=t..floor(n/i))))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 03 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n<0, 0, If[n == 0, 1, If[i == 1, If[n >= t, 1, 0], If[i == 0, 0, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t, Floor[n/i]}]]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ[Length/@Split[#]]&]],{n,20}] (* Gus Wiseman, Jan 21 2019 *)

Extensions

More terms from Vladeta Jovovic, Nov 23 2004

A100882 Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 18, 21, 29, 29, 40, 47, 56, 62, 83, 86, 111, 124, 146, 166, 207, 217, 267, 300, 352, 389, 471, 505, 604, 668, 772, 860, 1015, 1085, 1279, 1419, 1622, 1780, 2072, 2242, 2595, 2858, 3231, 3563, 4092, 4421, 5057, 5557, 6250
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(4) = 4 because in each of the partitions 4, 3+1, 2+2, 1+1+1+1, the frequencies of the summands is nonincreasing as the summands decrease. The partition 2+1+1 is not counted because 2 is used once, but 1 is used twice.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=1 then `if`(n<=t, 1, 0)
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=1..min(t, floor(n/i)))
          fi
        end:
    a:= n-> b(n, n, n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n == 0, 1, i == 1, If[n <= t, 1, 0], i == 0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t, Floor[n/i]]}]]; a[n_] := b[n, n, n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 21 2011

A100881 Number of partitions of n in which the sequence of frequencies of the summands is decreasing.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 8, 9, 13, 10, 13, 15, 16, 18, 21, 17, 24, 28, 26, 26, 36, 32, 38, 42, 40, 46, 52, 48, 63, 63, 59, 63, 85, 77, 81, 92, 89, 102, 116, 98, 122, 134, 130, 140, 157, 145, 165, 182, 190, 191, 207, 195, 235, 259, 232, 252, 293, 279
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(7) = 4 because in each of the four partitions [7], [3,3,1], [2,2,2,1], [1,1,1,1,1,1,1] the frequency with which a summand is used decreases as the summand decreases.
		

Crossrefs

Programs

  • Haskell
    a100881 = p 0 0 1 where
       p m m' k x | x == 0    = if m > m' || m == 0 then 1 else 0
                  | x < k     = 0
                  | m == 0    = p 1 m' k (x - k) + p 0 m' (k + 1) x
                  | otherwise = p (m + 1) m' k (x - k) +
                                if m > m' then p 0 m (k + 1) x else 0
    -- Reinhard Zumkeller, Dec 27 2012
  • Maple
    b:= proc(n, i, t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=1..min(t-1, floor(n/i)))
          fi
        end:
    a:= n-> b(n, n, n+1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, 1, Min[t-1, Floor[n/i]]}]]; a[n_] := b[n, n, n+1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Feb 21 2011

A100890 Imaginary part of multiplier m of the Gaussian multiperfect number associated with the real part A100889(n).

Original entry on oeis.org

0, -1, 2, 2, 3, 2, -1, -2, 2, -3, -1, -3, -1, -4, 2, 0, -1, -2, 0, 1, -4, 0, 3, -3, 1, 0, 0, 0, 4, 3, 3, 0, 1, 0, 0, 4, 0, 4, -4, 3, -1
Offset: 1

Views

Author

Keywords

Comments

Let the Gaussian integer z = A100884(n)+i*A100885(n). Then a(n) = Im(m) = Im( sigma(z)/z).

Crossrefs

Extensions

Edited, all values replaced by R. J. Mathar, Mar 12 2010
a(10)-a(41) from Amiram Eldar, Feb 10 2020

A332318 Real part of Gaussian norm-multiply-perfect numbers, in order of increasing norm.

Original entry on oeis.org

1, 2, 1, 3, 6, 5, 6, 10, 2, 8, 16, 12, 21, 18, 26, 30, 13, 43, 28, 6, 52, 60, 20, 10, 72, 56, 26, 28, 85, 95, 20, 100, 58, 80, 40, 36, 108, 120, 48, 190, 144, 176, 204, 38, 106, 214, 4, 84, 232, 276, 136, 216, 300, 174, 181, 263, 216, 312, 340, 140, 464, 20, 380
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

Norm-multiply-perfect numbers where defined by Spira as Gaussian integers z such that norm(sigma(z)) is divisible by norm(z), where sigma(z) is the sum of the divisors of z = a + b*i and norm(z) = z * conj(z) = a^2 + b^2.
If the ratio norm(sigma(z))/norm(z) is 2 then the number is called a norm-perfect. The norm-perfect numbers correspond to n = 1, 13, 26, ... They are 2 + i, 21 + 22*i, 56 + 64*i, ...
Only nonnegative terms are included, since if z = a + b*i is a norm-multiply-perfect number then z*i, -z and -z*i are also norm-multiply-perfect numbers and one of the four has nonnegative a and b. Terms with the same norm are ordered by their real parts.
The corresponding imaginary parts are in A332319.
The corresponding norms are 1, 5, 10, 10, 40, 50, 52, 200, 260, 260, 260, 468, ...
The corresponding ratios norm(sigma(k))/k are 1, 2, 5, 4, 5, 8, 5, 10, 9, 10, ...

Examples

			2 + i is a norm-perfect number since sigma(2 + i) = 3 + i, and (3^2 + 1^2) = 10 = 2 * 5 = 2 * (2^1 + 1^2).
1 + 3*i is a norm-multiply-perfect number since sigma(1 + 3*i) = 5 + 5*i, and (5^2 + 5^2) = 50 = 5 * 10 = 5 * (1^2 + 3^2).
		

Crossrefs

Programs

  • Mathematica
    csigma[z_] := DivisorSigma[1, z, GaussianIntegers -> True]; normultPerf[z_] := Divisible[Abs[csigma[z]]^2, Abs[z]^2]; seq = {}; max = 10^2; Do[z = a + b*I; If[Abs[z] <= max && normultPerf[z], AppendTo[seq, {Abs[z]^2, z}]], {a, 1, max}, {b, 0, max}]; Re[Transpose[Sort[seq]][[2]]] (* after T. D. Noe at A102531 *)

A332319 Imaginary part of Gaussian norm-multiply-perfect numbers, in order of increasing norm.

Original entry on oeis.org

0, 1, 3, 1, 2, 5, 4, 10, 16, 14, 2, 18, 22, 26, 18, 20, 41, 1, 36, 48, 24, 12, 65, 70, 24, 64, 82, 88, 45, 15, 100, 20, 94, 100, 130, 132, 84, 120, 184, 30, 148, 108, 32, 216, 192, 48, 228, 212, 51, 24, 252, 188, 60, 282, 283, 209, 312, 216, 198, 440, 102, 490
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2020

Keywords

Comments

See A332318 (the corresponding real parts) for the definition of Gaussian norm-multiply-perfect numbers.

Crossrefs

Programs

  • Mathematica
    csigma[z_] := DivisorSigma[1, z, GaussianIntegers -> True]; normultPerf[z_] := Divisible[Abs[csigma[z]]^2, Abs[z]^2]; seq = {}; max = 10^2; Do[z = a + b*I; If[Abs[z] <= max && normultPerf[z], AppendTo[seq, {Abs[z]^2, z}]], {a, 1, max}, {b, 0, max}]; Im[Transpose[Sort[seq]][[2]]] (* after T. D. Noe at A102532 *)
Showing 1-8 of 8 results.