cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101089 Second partial sums of fourth powers (A000583).

Original entry on oeis.org

1, 18, 116, 470, 1449, 3724, 8400, 17172, 32505, 57838, 97812, 158522, 247793, 375480, 553792, 797640, 1125009, 1557354, 2120020, 2842686, 3759833, 4911236, 6342480, 8105500, 10259145, 12869766, 16011828, 19768546, 24232545, 29506544
Offset: 1

Views

Author

Cecilia Rossiter, Dec 14 2004

Keywords

Comments

a(n) is the n-th antidiagonal sum of the convolution array A213553. - Clark Kimberling, Jun 17 2012
a(n-1)/n^5 is the "retention" of water on a 3 X 3 random surface of n levels - see Knecht et al., 2012, Schrenk et al., 2014. - Robert M. Ziff, Mar 08 2014
The general formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) is the m-th Faulhaber’s polynomial. - Luciano Ancora, Jan 26 2015

Examples

			a(7) = 8400 = 1*(8-1)^4 + 2*(8-2)^4 + 3*(8-3)^4 + 4*(8-4)^4 + 5*(8-5)^4 + 6*(8-6)^4 + 7*(8-7)^4. - _Bruno Berselli_, Jan 31 2014
		

Crossrefs

Partial sums of A000538.

Programs

  • GAP
    List([1..40], n-> (n+1)^2*(2*(n+1)^4-5*(n+1)^2+3)/60); # G. C. Greubel, Jul 31 2019
  • Magma
    [(1/60)*n*(n+1)^2*(n+2)*(2*n*(n+2)-1): n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
    
  • Maple
    f:=n->(2*n^6-5*n^4+3*n^2)/60;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    a[n_] := n(n+1)^2(n+2)(2n(n+2) -1)/60; Table[a[n], {n, 40}]
    CoefficientList[Series[(1+x)*(1+10*x+x^2)/(1-x)^7, {x,0,40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Nest[Accumulate[#]&,Range[30]^4,2] (* Harvey P. Dale, Aug 13 2024 *)
  • PARI
    a(n)=n*(n+1)^2*(n+2)*(2*n*(n+2)-1)/60 \\ Charles R Greathouse IV, Mar 18 2014
    
  • Sage
    [n*(n+1)^2*(n+2)*(2*n*(n+2)-1)/60 for n in range(1,40)] # Danny Rorabaugh, Apr 20 2015
    

Formula

a(n) = (1/60)*n*(n+1)^2*(n+2)*(2*n*(n+2)-1).
G.f.: x*(1+x)*(1+10*x+x^2)/(1-x)^7. - Colin Barker, Apr 04 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^4, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^4. - Luciano Ancora, Jan 08 2015
Sum_{n>=1} 1/a(n) = 85/3 + 10*Pi^2/3 - 20*sqrt(2/3)*Pi*cot(sqrt(3/2)*Pi). - Amiram Eldar, Jan 26 2022
a(n) = (1/2)*Sum_{1 <= i, j <= n+1} (i - j)^4 - Peter Bala, Jun 11 2024

Extensions

Edited by Ralf Stephan, Dec 16 2004