A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A000538
Sum of fourth powers: 0^4 + 1^4 + ... + n^4.
Original entry on oeis.org
0, 1, 17, 98, 354, 979, 2275, 4676, 8772, 15333, 25333, 39974, 60710, 89271, 127687, 178312, 243848, 327369, 432345, 562666, 722666, 917147, 1151403, 1431244, 1763020, 2153645, 2610621, 3142062, 3756718, 4463999, 5273999, 6197520, 7246096, 8432017, 9768353
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 222.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 155.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1991, p. 275.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. L. Bailey, Jr., A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359.
- J. L. Bailey, A table to facilitate the fitting of certain logistic curves, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
- Bruno Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian).
- Stefano Capparelli, Notes on Discrete Math, Società Editrice Esculapio SRL (2019) 3-4.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein, MathWorld: Faulhaber's Formula
- Wikipedia, Faulhaber's formula
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Cf.
A000217,
A000330,
A000537,
A000539,
A000540,
A000541,
A000542,
A007487,
A023002,
A064538,
A101089.
-
a000538 n = (3 * n * (n + 1) - 1) * (2 * n + 1) * (n + 1) * n `div` 30
-- Reinhard Zumkeller, Nov 11 2012
-
[n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30: n in [0..35]]; // Vincenzo Librandi, Apr 04 2015
-
A000538 := n-> n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30;
-
Accumulate[Range[0,40]^4] (* Harvey P. Dale, Jan 13 2011 *)
CoefficientList[Series[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 07 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 17, 98, 354, 979}, 35] (* Jean-François Alcover, Feb 09 2016 *)
Table[x^5/5+x^4/2+x^3/3-x/30,{x,40}] (* Harvey P. Dale, Jun 06 2021 *)
-
A000538(n):=n*(n+1)*(2*n+1)*(3*n^2+3*n-1)/30$
makelist(A000538(n),n,0,30); /* Martin Ettl, Nov 12 2012 */
-
a(n) = n*(1+n)*(1+2*n)*(-1+3*n+3*n^2)/30 \\ Charles R Greathouse IV, Nov 20 2012
-
concat(0, Vec(x*(1+11*x+11*x^2+x^3)/(1-x)^6 + O(x^100))) \\ Altug Alkan, Dec 07 2015
-
A000538_list, m = [0], [24, -36, 14, -1, 0, 0]
for _ in range(10**2):
for i in range(5):
m[i+1] += m[i]
A000538_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
def A000538(n): return n*(n**2*(n*(6*n+15)+10)-1)//30 # Chai Wah Wu, Oct 03 2024
-
[bernoulli_polynomial(n,5)/5 for n in range(1, 35)] # Zerinvary Lajos, May 17 2009
The general V. Jovovic formula has been slightly changed after his approval by
Wolfdieter Lang, Nov 03 2011
A253636
Second partial sums of eighth powers (A001016).
Original entry on oeis.org
1, 258, 7076, 79430, 542409, 2685004, 10592400, 35277012, 103008345, 270739678, 652829892, 1464901802, 3092704433, 6196296120, 11862778432, 21824228040, 38761435089, 66718602714, 111659333380, 182200064046, 290563654073, 453803117636, 695353566480, 1046979329500
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Recurrence relation for the second partial sums of m-th powers
- Luciano Ancora, Second partial sums of the m-th powers
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
List([1..30], n-> n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3)/180); # G. C. Greubel, Aug 28 2019
-
[n*(n+1)^2*(n+2)*(2*n^6+12*n^5+17*n^4-12*n^3-19*n^2+18*n-3)/180: n in [1..25]]; // Bruno Berselli, Jan 08 2015
-
seq(n*(n+1)^2*(n+2)*(2*n^6 +12*n^5 +17*n^4 -12*n^3 -19*n^2 +18*n -3))/180, n=1..30); # G. C. Greubel, Aug 28 2019
-
Table[n(n+1)^2(n+2)(2n^6 +12n^5 +17n^4 -12n^3 -19n^2 +18n -3)/180, {n,30}] (* Bruno Berselli, Jan 08 2015 *)
Nest[Accumulate,Range[30]^8,2] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,258,7076,79430,542409,2685004,10592400, 35277012, 103008345,270739678,652829892},30] (* Harvey P. Dale, Jul 02 2017 *)
-
a(n)=(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 \\ Charles R Greathouse IV, Sep 08 2015
-
[(2*n^10+20*n^9+75*n^8+120*n^7+42*n^6-84*n^5-50*n^4+40*n^3+21*n^2-6*n)/180 for n in [1..24]] # Tom Edgar, Jan 07 2015
A101090
Third partial sums of fourth powers (A000583).
Original entry on oeis.org
1, 19, 135, 605, 2054, 5778, 14178, 31350, 63855, 121693, 219505, 378027, 625820, 1001300, 1555092, 2352732, 3477741, 5035095, 7155115, 9997801, 13757634, 18668870, 25011350, 33116850, 43375995, 56245761, 72257589, 92026135, 116258680, 145765224, 181469288
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
A254681
Fifth partial sums of fourth powers (A000583).
Original entry on oeis.org
1, 21, 176, 936, 3750, 12342, 35112, 89232, 207207, 446875, 906048, 1743248, 3206268, 5670588, 9690000, 16062144, 25912029, 40797009, 62837104, 94875000, 140670530, 205134930, 294610680, 417203280, 583171875, 805386231
Offset: 1
Fourth differences: 1, 12, 23, 24, (repeat 24) ... (A101104)
Third differences: 1, 13, 36, 60, 84, 108, ... (A101103)
Second differences: 1, 14, 50, 110, 194, 302, ... (A005914)
First differences: 1, 15, 65, 175, 369, 671, ... (A005917)
-------------------------------------------------------------------------
The fourth powers: 1, 16, 81, 256, 625, 1296, ... (A000583)
-------------------------------------------------------------------------
First partial sums: 1, 17, 98, 354, 979, 2275, ... (A000538)
Second partial sums: 1, 18, 116, 470, 1449, 3724, ... (A101089)
Third partial sums: 1, 19, 135, 605, 2054, 5778, ... (A101090)
Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... (A101091)
Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers .
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A000538,
A000583,
A005914,
A005917,
A101089,
A101090,
A101091,
A101103,
A101104,
A254682,
A254683,
A254684.
-
[Binomial(n+5,6)*n*(n+5)*(2*n+5)/42: n in [1..30]]; // G. C. Greubel, Dec 01 2018
-
seq(coeff(series((x+11*x^2+11*x^3+x^4)/(1-x)^10,x,n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 02 2018
-
Table[n^2(1+n)(2+n)(3+n)(4+n)(5+n)^2(5+2n)/30240, {n,26}] (* or *)
CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(1-x)^10, {x,0,25}], x]
CoefficientList[Series[(1/30240)E^x (30240 + 604800 x + 2041200 x^2 + 2368800 x^3 + 1233540 x^4 + 326592 x^5 + 46410 x^6 + 3540 x^7 + 135 x^8 + 2 x^9), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Dec 02 2018 *)
Nest[Accumulate[#]&,Range[30]^4,5] (* Harvey P. Dale, Jan 03 2022 *)
-
my(x='x+O('x^30)); Vec((x+11*x^2+11*x^3+x^4)/(1-x)^10) \\ G. C. Greubel, Dec 01 2018
-
[binomial(n+5,6)*n*(n+5)*(2*n+5)/42 for n in (1..30)] # G. C. Greubel, Dec 01 2018
A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
Original entry on oeis.org
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1
Cecilia Rossiter, Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (1).
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
Cf.
A101095 for an expanded table and more about MagicNKZ.
-
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)
Original Formula edited and Crossrefs table added by
Danny Rorabaugh, Apr 22 2015
A101095
Fourth difference of fifth powers (A000584).
Original entry on oeis.org
1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive Machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 14 |
A010966 | ....... | ....... | ....... | ....... |
A254872 | ....... | .......
--------------------------------------------------------------------------------------
-
I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
-
a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
-
[1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 23 2015
A213553
Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^3, n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 10, 8, 46, 43, 27, 146, 142, 118, 64, 371, 366, 334, 253, 125, 812, 806, 766, 658, 466, 216, 1596, 1589, 1541, 1406, 1150, 775, 343, 2892, 2884, 2828, 2666, 2346, 1846, 1198, 512, 4917, 4908, 4844, 4655, 4271, 3646, 2782, 1753, 729, 7942
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1.....10....46.....146....371
8.....43....142....366....806
27....118...334....766....1541
64....253...658....1406...2666
125...466...1150...2346...4271
-
Flat(List([1..12], n-> List([1..n], k-> Binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30 ))); # G. C. Greubel, Jul 31 2019
-
[Binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k + n*(3*n^2 +6*n +1))/30: k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 31 2019
-
(* First program *)
b[n_]:= n; c[n_]:= n^3;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[T[n, k], {k, 1, 60}] (* A213553 *)
d = Table[T[n, n], {n, 1, 40}] (* A213554 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A101089 *)
(* Second program *)
Table[Binomial[n-k+2, 2]*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 31 2019 *)
-
t(n,k) = binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k +n*(3*n^2 +6*n +1))/30;
for(n=1,12, for(k=1,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Jul 31 2019
-
[[binomial(n-k+2, 2)*(12*k^3 +9*k^2*n -9*k^2 +6*k*n^2 +3*k*n -k + n*(3*n^2 +6*n +1))/30 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jul 31 2019
A254470
Sixth partial sums of fourth powers (A000583).
Original entry on oeis.org
1, 22, 198, 1134, 4884, 17226, 52338, 141570, 348777, 795652, 1701700, 3444948, 6651216, 12321804, 22011804, 38073948, 63985977, 104782986, 167620090, 262495090, 403165620, 608300550, 902911230, 1320114510, 1903286385, 2708672616, 3808530792, 5294887048
Offset: 1
First differences: 1, 15, 65, 175, 369, 671, ... (A005917)
-------------------------------------------------------------------------
The fourth powers: 1, 16, 81, 256, 625, 1296, ... (A000583)
-------------------------------------------------------------------------
First partial sums: 1, 17, 98, 354, 979, 2275, ... (A000538)
Second partial sums: 1, 18, 116, 470, 1449, 3724, ... (A101089)
Third partial sums: 1, 19, 135, 605, 2054, 5778, ... (A101090)
Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... (A101091)
Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... (A254681)
Sixth partial sums: 1, 22, 198,1134, 4884, 17226, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(1+12*n+ 2*n^2)/302400: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
-
Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (1 + 12 n + 2 n^2)/302400,{n, 25}] (* or *) CoefficientList[Series[(- 1 - 11 x - 11 x^2 - x^3)/(- 1 + x)^11, {x, 0, 24}], x]
Nest[Accumulate,Range[30]^4,6] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,22,198,1134,4884,17226,52338,141570,348777,795652,1701700},30] (* Harvey P. Dale, Apr 23 2016 *)
-
vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(1 + 12*n + 2*n^2)/302400) \\ Derek Orr, Feb 19 2015
A254870
Seventh partial sums of fourth powers (A000583).
Original entry on oeis.org
1, 23, 221, 1355, 6239, 23465, 75803, 217373, 566150, 1361802, 3063502, 6508450, 13159666, 25481470, 47493274, 85567222, 149553199, 254336185, 421956275, 684451365, 1087616985, 1695917535, 2598828765, 3918943275, 5822229660, 8530902276, 12339433068
Offset: 1
Second differences: 2, 14, 50, 110, 194, 302, ... A120328(2k+1)
First differences: 1, 15, 65, 175, 369, 671, ... A005917
--------------------------------------------------------------------------
The fourth powers: 1, 16, 81, 256, 625, 1296, ... A000583
--------------------------------------------------------------------------
First partial sums: 1, 17, 98, 354, 979, 2275, ... A000538
Second partial sums: 1, 18, 116, 470, 1449, 3724, ... A101089
Third partial sums: 1, 19, 135, 605, 2054, 5778, ... A101090
Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... A101091
Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... A254681
Sixth partial sums: 1, 22, 198, 1134, 4884, 17226, ... A254470
Seventh partial sums: 1, 23, 221, 1355, 6239, 23465, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf.
A000538,
A000583,
A005917,
A101089,
A101090,
A101091,
A254681,
A254470,
A254869,
A254871,
A254872.
-
[n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(7+2*n)*(7 +42*n+6*n^2)/19958400: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n)((7 + 42 n + 6 n^2)/19958400), {n, 24}] (* or *)
CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(- 1 + x)^12, {x, 0, 23}], x]
-
vector(50,n,n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(7 + 42*n + 6*n^2)/19958400) \\ Derek Orr, Feb 19 2015
Showing 1-10 of 14 results.
Comments