cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A009120 a(n) = (4*n)!/(2*n)!.

Original entry on oeis.org

1, 12, 1680, 665280, 518918400, 670442572800, 1295295050649600, 3497296636753920000, 12576278705767096320000, 58102407620643984998400000, 335367096786357081410764800000, 2365008766537390138108713369600000, 20007974164906320568399715106816000000
Offset: 0

Views

Author

Keywords

Comments

Absolute value of the coefficients in the expansion of cos(x^2). - clarified by Muniru A Asiru, Jul 26 2018
Bisection of sequence A001813. - Gary W. Adamson, Jul 19 2011
Expansion of cosh(x^2) in powers of x^4. - G. C. Greubel, Jul 26 2018

Crossrefs

Programs

  • GAP
    List([0..25],n->Factorial(4*n)/Factorial(2*n)); # Muniru A Asiru, Jul 26 2018
  • Magma
    [Factorial(4*n)/Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Jul 20 2011
    
  • Maple
    seq(coeff(series(factorial(n)*cosh(x^2), x,n+1),x,n),n=0..50,4); # Muniru A Asiru, Jul 27 2018
  • Mathematica
    Table[(4n)!/(2n)!,{n,0,10}] (* or *) With[{nn=60},Abs[Take[ CoefficientList[ Series[ Cos[x^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,4}]]] (* Harvey P. Dale, Mar 27 2012 *)
  • PARI
    for(n=0, 20, print1((4*n)!/(2*n)!, ", ")) \\ G. C. Greubel, Jul 26 2018
    
  • PARI
    my(x='x+O('x^120)); v=Vec(serlaplace(cosh(x^2))); vector(#v\4, n, v[4*n-3]) \\ G. C. Greubel, Jul 26 2018
    

Formula

a(n) = 4^n * A101485(n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(1/4)*exp(-1/4*sqrt(x))/(sqrt(Pi)*x^(3/4)) dx, n >= 0. - Karol A. Penson, Sep 19 2001
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^(2n), where M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
Sum_{n>=0} 1/a(n) = 1 + (1/4) * exp(1/4) * sqrt(Pi) * erf(1/2) - (1/4) * exp(-1/4) * sqrt(Pi) * erfi(1/2), where erf is the error function and erfi is the imaginary error function. - Amiram Eldar, Jan 08 2023

Extensions

Extended by Olivier Gérard, Mar 01 1997

A330797 Evaluation of the Stirling cycle polynomials at -1/2 and normalized with (-2)^n.

Original entry on oeis.org

1, 1, -1, 3, -15, 105, -945, 10395, -135135, 2027025, -34459425, 654729075, -13749310575, 316234143225, -7905853580625, 213458046676875, -6190283353629375, 191898783962510625, -6332659870762850625, 221643095476699771875, -8200794532637891559375, 319830986772877770815625
Offset: 0

Views

Author

Peter Luschny, Jan 06 2020

Keywords

Crossrefs

The equivalent for Stirling2 is A009235.

Programs

  • Magma
    m:=30;
    R:=PowerSeriesRing(Rationals(), m+2);
    A330797:= func< n | Coefficient(R!(Laplace( Sqrt(1+2*x) )), n) >;
    [A330797(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
  • Maple
    a := n -> ((-2)^(n-1)*GAMMA(n-1/2))/sqrt(Pi): seq(a(n), n=1..9);
    # Alternative:
    arec := proc(n) option remember: if n = 0 then 1 else
    (3 - 2*n)*arec(n-1) fi end: seq(arec(n), n=0..20);
    # Or:
    gf := (1+2*x)^(1/2); ser := series(gf, x, 24);
    seq(n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    a[n_]:= (-2)^n*Sum[Abs[StirlingS1[n, k]]*(-1/2)^k, {k, 0, n}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 19 2021 *)
    Table[(-2)^(n-1)*Pochhammer[1/2, n-1], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
  • SageMath
    def A330797(n): return (-2)^(n-1)*rising_factorial(1/2, n-1)
    [A330797(n) for n in (0..20)]
    

Formula

a(n) = (-2)^n*Sum_{k=0..n} |Stirling1(n,k)|*(-1/2)^k.
a(n) = (-2)^(n-1)*RisingFactorial(1/2, n-1).
a(n) = ((-2)^(n-1)*Gamma(n - 1/2))/sqrt(Pi).
a(n) = n!*[x^n] (1+2*x)^(1/2).
D-finite with recurrence a(n) = (3 - 2*n)*a(n-1).
a(n) = (-1)^(n-1)*(2*n-3)!! = (-1)^(n-1)*A001147(n-1).
a(2*n) = -2^(2*n-1)*RisingFactorial(1/2, 2*n-1) = -A103639(n-1).
a(2*n+1) = 4^n*RisingFactorial(1/2, 2*n) = A101485(n).
a(n) ~ -((-2*n)^n/exp(n))/(sqrt(2)*n).
Sum_{n>=0} 1/a(n) = 2 - sqrt(Pi/(2*e))*erfi(1/sqrt(2)), where erfi is the imaginary error function. - Amiram Eldar, Jan 08 2023
O.g.f.: 1+x*2F0(1/2,1;;-2*x). - R. J. Mathar, Aug 10 2025

A362847 Triangle read by rows, T(n, k) = 4^k * Gamma(n + k + 1/2) / Gamma(n - k + 1/2).

Original entry on oeis.org

1, 1, 3, 1, 15, 105, 1, 35, 945, 10395, 1, 63, 3465, 135135, 2027025, 1, 99, 9009, 675675, 34459425, 654729075, 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225, 1, 195, 36465, 6235515, 916620705, 105411381075, 7905853580625, 213458046676875
Offset: 0

Views

Author

Peter Luschny, May 05 2023

Keywords

Examples

			[0] 1;
[1] 1,   3;
[2] 1,  15,   105;
[3] 1,  35,   945,   10395;
[4] 1,  63,  3465,  135135,   2027025;
[5] 1,  99,  9009,  675675,  34459425,   654729075;
[6] 1, 143, 19305, 2297295, 218243025, 13749310575, 316234143225;
		

Crossrefs

Cf. A362848 (row sums), A000466 (column 1), A101485 (main diagonal).

Programs

  • Maple
    T := (n, k) -> 4^k * GAMMA(n + k + 1/2) / GAMMA(n - k + 1/2):
    seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    T[n_,k_]:=(2*(n+k)-1)!!/(2*(n-k)-1)!!;Flatten[Table[T[n,k],{n,0,7},{k,0,n}]] (* Detlef Meya, Oct 09 2023 *)

Formula

T(n ,k ) = (2*(n + k) - 1)!!/(2*(n - k) - 1)!!; 0 <= n <= k. - Detlef Meya, Oct 09 2023
Showing 1-3 of 3 results.