A009120 a(n) = (4*n)!/(2*n)!.
1, 12, 1680, 665280, 518918400, 670442572800, 1295295050649600, 3497296636753920000, 12576278705767096320000, 58102407620643984998400000, 335367096786357081410764800000, 2365008766537390138108713369600000, 20007974164906320568399715106816000000
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
GAP
List([0..25],n->Factorial(4*n)/Factorial(2*n)); # Muniru A Asiru, Jul 26 2018
-
Magma
[Factorial(4*n)/Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Jul 20 2011
-
Maple
seq(coeff(series(factorial(n)*cosh(x^2), x,n+1),x,n),n=0..50,4); # Muniru A Asiru, Jul 27 2018
-
Mathematica
Table[(4n)!/(2n)!,{n,0,10}] (* or *) With[{nn=60},Abs[Take[ CoefficientList[ Series[ Cos[x^2],{x,0,nn}],x] Range[0,nn]!,{1,-1,4}]]] (* Harvey P. Dale, Mar 27 2012 *)
-
PARI
for(n=0, 20, print1((4*n)!/(2*n)!, ", ")) \\ G. C. Greubel, Jul 26 2018
-
PARI
my(x='x+O('x^120)); v=Vec(serlaplace(cosh(x^2))); vector(#v\4, n, v[4*n-3]) \\ G. C. Greubel, Jul 26 2018
Formula
a(n) = 4^n * A101485(n).
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*(1/4)*exp(-1/4*sqrt(x))/(sqrt(Pi)*x^(3/4)) dx, n >= 0. - Karol A. Penson, Sep 19 2001
From Gary W. Adamson, Jul 19 2011: (Start)
a(n) = upper left term of M^(2n), where M = an infinite square production matrix as follows:
2, 2, 0, 0, 0, 0, ...
4, 4, 4, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
Sum_{n>=0} 1/a(n) = 1 + (1/4) * exp(1/4) * sqrt(Pi) * erf(1/2) - (1/4) * exp(-1/4) * sqrt(Pi) * erfi(1/2), where erf is the error function and erfi is the imaginary error function. - Amiram Eldar, Jan 08 2023
Extensions
Extended by Olivier Gérard, Mar 01 1997
Comments