A101881 Write two numbers, skip one, write two, skip two, write two, skip three ... and so on.
1, 2, 4, 5, 8, 9, 13, 14, 19, 20, 26, 27, 34, 35, 43, 44, 53, 54, 64, 65, 76, 77, 89, 90, 103, 104, 118, 119, 134, 135, 151, 152, 169, 170, 188, 189, 208, 209, 229, 230, 251, 252, 274, 275, 298, 299, 323, 324, 349, 350, 376, 377, 404, 405, 433, 434, 463, 464, 494
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Lars Blomberg, Illustration for 14-polygon
- Lars Blomberg, Illustration for 15-polygon
- Rene Marczinzik, Finitistic Auslander algebras, arXiv:1701.00972 [math.RT], 2017. [Page 9, Conjecture]
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Haskell
import Data.List (intersperse) a101881 n = a101881_list !! n a101881_list = scanl1 (+) $ intersperse 1 [1..] -- Reinhard Zumkeller, Feb 20 2015
-
Magma
[(1/16)*(2*n^2+18*n+15+(2*n+1)*(-1)^n): n in [0..60]]; // Vincenzo Librandi, Mar 11 2014
-
Mathematica
CoefficientList[Series[(-1 + x^3 - x)/((x + 1)^2 (x - 1)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 11 2014 *) LinearRecurrence[{1,2,-2,-1,1},{1,2,4,5,8},60] (* Harvey P. Dale, Dec 07 2016 *) With[{nn=60},Take[#,2]&/@TakeList[Range[(nn^2+nn-6)/2],Range[3,nn]]]// Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 30 2019 *)
-
PARI
Vec((-1+x^3-x)/((x+1)^2*(x-1)^3) + O(x^60)) \\ Iain Fox, Nov 17 2017
Formula
G.f.: (-1+x^3-x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = (1/16)*(2*n^2 + 18*n + 15 + (2*n+1)*(-1)^n). - Ralf Stephan, Mar 09 2014
a(n) = n + 1 + A008805(n-2). - Wesley Ivan Hurt, Nov 17 2017
E.g.f.: (cosh(x) - sinh(x))*(1 - 2*x + (15 + 20*x + 2*x^2)*(cosh(2*x) + sinh(2*x)))/16. - Stefano Spezia, Feb 20 2020
Comments