A139159
a(n) = prime(n)! + 1.
Original entry on oeis.org
3, 7, 121, 5041, 39916801, 6227020801, 355687428096001, 121645100408832001, 25852016738884976640001, 8841761993739701954543616000001, 8222838654177922817725562880000001, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001
Offset: 1
A093804
Primes p such that p! + 1 is also prime.
Original entry on oeis.org
2, 3, 11, 37, 41, 73, 26951, 110059, 150209
Offset: 1
Sum_{d|3} d! = 1! + 3! = 7 is prime, so 3 is a member.
- Chris K. Caldwell, The List of Largest Known Primes, 110059! + 1
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv:1202.3670 [math.HO], 2012. - From N. J. A. Sloane, Jun 13 2012
- Apoloniusz Tyszka, A common approach to the problem of the infinitude of twin primes, primes of the form n! + 1, and primes of the form n! - 1, 2018.
- Apoloniusz Tyszka, A new approach to solving number theoretic problems, 2018.
a(9)=150209 (found on Jun 09 2012, by Rene Dohmen), added by
Jinyuan Wang, Jan 20 2020
A163081
Primes of the form p$ + 1 where p is prime, where '$' denotes the swinging factorial (A056040).
Original entry on oeis.org
3, 7, 31, 4808643121, 483701705079089804581, 3283733939424401442167506310317720418331001
Offset: 1
3 and 3$ + 1 = 7 are prime, so 7 is a member.
Showing 1-3 of 3 results.
Comments