cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103435 a(n) = 2^n * Fibonacci(n).

Original entry on oeis.org

0, 2, 4, 16, 48, 160, 512, 1664, 5376, 17408, 56320, 182272, 589824, 1908736, 6176768, 19988480, 64684032, 209321984, 677380096, 2192048128, 7093616640, 22955425792, 74285318144, 240392339456, 777925951488, 2517421260800
Offset: 0

Views

Author

Ralf Stephan, Feb 08 2005

Keywords

Comments

Cardinality of set of bracelets of size at most n that are tiled with two types of colored squares and four types of colored dominoes.
a(n) is also the diagonal element of the matrix A(i,j) whose first row (i=1) and first column (j=1) are the Fibonacci numbers: A(1,k)=A(k,1)=fib(k) and whose generic element is the sum of element in adjacent (preceding) row and column minus the absolute value of their difference. So a(n) = A(n,n) = A(i-1,j)+A(i,j-1)-abs(A(i-1,j)-A(i,j-1)). - Carmine Suriano, May 13 2010
a(n) is the coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) given for d=sqrt(x+1) by p(n,x)=((x+d)^n-(x-d)^n)/(2d), for n>=1. The constant terms under this reduction are the absolute values of terms of A086344. See A192232 for a discussion of reduction. - Clark Kimberling, Jun 29 2011
The exponential convolution of A000032 and A000045. - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(5)=160=A(5,5)=A(4,5)+A(5,4)-abs[A(4,5)+A(5,4)]=80+80-0. - _Carmine Suriano_, May 13 2010
G.f. = 2*x + 4*x^2 + 16*x^3 + 48*x^4 + 160*x^5 + 512*x^6 + 1664*x^7 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, identity 236, p. 131.

Crossrefs

First differences of A014334.
Partial sums of A087131.

Programs

  • Magma
    [2^n *Fibonacci(n): n in [0..50]]; // Vincenzo Librandi, Apr 04 2011
    
  • Mathematica
    Expand[Table[((1 + Sqrt[5])^n - (1 - Sqrt[5])^n)5/(5 Sqrt[5]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)
    Table[2^n Fibonacci[n],{n,0,40}] (* or *) LinearRecurrence[{2,4},{0,2},40] (* Harvey P. Dale, Oct 14 2020 *)
  • PARI
    a(n)=fibonacci(n)<Charles R Greathouse IV, Feb 03 2014
    
  • PARI
    concat(0, Vec(2*x/(1-2*x-4*x^2) + O(x^99))) \\ Altug Alkan, May 11 2016

Formula

a(n) = A006483(n) + 1 = 2*A085449(n) = 2*A063727(n-1), n>0.
G.f.: 2*x / (1 - 2*x - 4*x^2).
a(n) = Sum_{i=0..n-1}( 2^i * Lucas(i) ).
a(n) = 2*a(n-1) + 4*a(n-2). - Carmine Suriano, May 13 2010
a(n) = a(-n) * -(-4)^n for all n in Z. - Michael Somos, Sep 20 2014
E.g.f.: 2*sinh(sqrt(5)*x)*exp(x)/sqrt(5). - Ilya Gutkovskiy, May 10 2016
Sum_{n>=1} 1/a(n) = (1/2) * A269991. - Amiram Eldar, Nov 17 2020
a(n) == 2*n (mod 10). - Amiram Eldar, Jan 15 2022
a(n) = Sum_{k=0..n} binomial(n,k) * Fibonacci(k) * Lucas(n-k) (Wall, 1987). - Amiram Eldar, Jan 27 2022