cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A063727 a(n) = 2*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 24, 80, 256, 832, 2688, 8704, 28160, 91136, 294912, 954368, 3088384, 9994240, 32342016, 104660992, 338690048, 1096024064, 3546808320, 11477712896, 37142659072, 120196169728, 388962975744, 1258710630400
Offset: 0

Views

Author

Klaus E. Kastberg (kastberg(AT)hotkey.net.au), Aug 12 2001

Keywords

Comments

Essentially the same as A085449.
Convergents to 2*golden ratio = (1+sqrt(5)).
Number of ways to tile an n-board with two types of colored squares and four types of colored dominoes.
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 5 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(5). - Cino Hilliard, Sep 25 2005
a(n) is also the quasi-diagonal element A(i-1,i)=A(1,i-1) of matrix A(i,j) whose elements in first row A(1,k) and first column A(k,1) equal k-th Fibonacci Fib(k) and the generic element is the sum of adjacent (previous) in row and column minus the absolute value of their difference. - Carmine Suriano, May 13 2010
Equals INVERT transform of A006131: (1, 1, 5, 9, 29, 65, 181, ...). - Gary W. Adamson, Aug 12 2010
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 2's along the three central diagonals. - John M. Campbell, Jul 19 2011
The numbers composing the denominators of the fractional limit to A134972. - Seiichi Kirikami, Mar 06 2012
Pisano period lengths: 1, 1, 8, 1, 5, 8, 48, 1, 24, 5, 10, 8, 42, 48, 40, 1, 72, 24, 18, 5, ... - R. J. Mathar, Aug 10 2012

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 235.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

Second row of A234357. Row sums of triangle A016095.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • GAP
    List([0..25],n->2^n*Fibonacci(n+1)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [n le 2 select n else 2*Self(n-1) + 4*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+4*a[n-2]od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 15 2008
  • Mathematica
    a[n_]:=(MatrixPower[{{1,5},{1,1}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    CoefficientList[Series[1/(1 - 2 x - 4 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 31 2014 *)
    LinearRecurrence[{2, 4}, {1, 2}, 50] (* G. C. Greubel, Jan 07 2018 *)
  • PARI
    s(n)=if(n<2,n+1,(s(n-1)+(s(n-2)*2))*2); for(n=0,32,print(s(n)))
    
  • PARI
    { for (n=0, 200, if (n>1, a=2*a1 + 4*a2; a2=a1; a1=a, if (n, a=a1=2, a=a2=1)); write("b063727.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 28 2009
    
  • SageMath
    [lucas_number1(n,2,-4) for n in range(1, 26)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 2 * A087206(n+1).
From Vladeta Jovovic, Aug 16 2001: (Start)
a(n) = sqrt(5)/10*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)).
G.f.: 1/(1-2*x-4*x^2). (End)
From Mario Catalani (mario.catalani(AT)unito.it), Jun 13 2003: (Start)
a(2*n) = 4*a(n-1)^2 + a(n)^2.
A084057(n+1)/a(n) converges to sqrt(5). (End)
E.g.f.: exp(x)*(cosh(sqrt(5)*x)+sinh(sqrt(5)*x)/sqrt(5)). - Paul Barry, Sep 20 2003
a(n) = 2^n*Fibonacci(n+1). - Vladeta Jovovic, Oct 25 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2*k+1)*5^k. - Paul Barry, Nov 15 2003
a(n) = U(n, i/2)*(-i*2)^n, i^2=-1. - Paul Barry, Nov 17 2003
Simplified formula: ((1+sqrt(5))^n-(1-sqrt(5))^n)/sqrt(20). Offset 1. a(3)=8. - Al Hakanson (hawkuu(AT)gmail.com), Jan 03 2009
First binomial transform of 1,1,5,5,25,25. - Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
a(n) = A(n-1,n) = A(n,n-1); A(i,j) = A(i-1,j) + A(i,j-1) - abs(A(i-1,j) - A(i,j-1)). - Carmine Suriano, May 13 2010
G.f.: G(0) where G(k) = 1 + 2*x*(1+2*x)/(1 - 2*x*(1+2*x)/(2*x*(1+2*x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
G.f.: G(0)/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(5*k-1)/(x*(5*k+4) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
G.f.: Q(0)/2 , where Q(k) = 1 + 1/(1 - x*(4*k+2 + 4*x )/( x*(4*k+4 + 4*x ) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
Sum_{n>=0} 1/a(n) = A269991. - Amiram Eldar, Feb 01 2021

Extensions

Better description from Jason Earls and Vladeta Jovovic, Aug 16 2001
Incorrect comment removed by Greg Dresden, Jun 02 2020

A087131 a(n) = 2^n*Lucas(n), where Lucas = A000032.

Original entry on oeis.org

2, 2, 12, 32, 112, 352, 1152, 3712, 12032, 38912, 125952, 407552, 1318912, 4268032, 13811712, 44695552, 144637952, 468058112, 1514668032, 4901568512, 15861809152, 51329892352, 166107021312, 537533612032, 1739495309312
Offset: 0

Views

Author

Paul Barry, Aug 16 2003

Keywords

Comments

Number of ways to tile an n-bracelet with two types of colored squares and four types of colored dominoes.
Inverse binomial transform of even Lucas numbers (A014448).
From L. Edson Jeffery, Apr 25 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=(Trace(A^n)-1)/2. Also a(n)=Trace((2*A_(5,1))^n), where A_(5,1)=[(0,1); (1,1)] is also a unit-primitive matrix. (End)
Also the number of connected dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, May 02 2017
Also the number of total dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, Apr 27 2018

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, identity 237, p. 132.

Crossrefs

First differences of A006483 and A103435.

Programs

  • Magma
    [2] cat [2^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[{{2, 2}, {2, 0}}, x]], {x, 1, 20}] (* Artur Jasinski, Jan 09 2007 *)
    Join[{2}, Table[2^n LucasL[n], {n, 20}]] (* Eric W. Weisstein, May 02 2017 *)
    Join[{2}, 2^# LucasL[#] & [Range[20]]] (* Eric W. Weisstein, May 02 2017 *)
    LinearRecurrence[{2, 4}, {2, 12}, {0, 20}] (* Eric W. Weisstein, Apr 27 2018 *)
    CoefficientList[Series[(2 (-1 + x))/(-1 + 2 x + 4 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 27 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0, 2, 2^n*(fibonacci(n+1) + fibonacci(n-1))), ", ")) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    first(n) = Vec(2*(1-x)/(1-2*x-4*x^2) + O(x^n)) \\ Iain Fox, Dec 19 2017
    
  • Sage
    [lucas_number2(n,2,-4) for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2*A084057(n).
Recurrence: a(n) = 2a(n-1) + 4a(n-2), a(0)=2, a(1)=2.
G.f.: 2*(1-x)/(1-2*x-4*x^2).
a(n) = (1+sqrt(5))^n + (1-sqrt(5))^n.
For n>=2, a(n) = Trace of matrix [({2,2},{2,0})^n]. - Artur Jasinski, Jan 09 2007
a(n) = 2*[A063727(n)-A063727(n-1)]. - R. J. Mathar, Nov 16 2007
a(n) = (5*A052899(n)-1)/2. - L. Edson Jeffery, Apr 25 2011
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 5*x^2) )^n for n >= 1. - Peter Bala, Jun 23 2015
Sum_{n>=1} 1/a(n) = (1/2) * A269992. - Amiram Eldar, Nov 17 2020
From Amiram Eldar, Jan 15 2022: (Start)
a(n) == 2 (mod 10).
a(n) = 5 * A014334(n) + 2.
a(n) = 10 * A014335(n) + 2. (End)

Extensions

Edited by Ralf Stephan, Feb 08 2005

A189732 a(1)=1, a(2)=5, a(n) = a(n-1) + 5*a(n-2).

Original entry on oeis.org

1, 5, 10, 35, 85, 260, 685, 1985, 5410, 15335, 42385, 119060, 330985, 926285, 2581210, 7212635, 20118685, 56181860, 156775285, 437684585, 1221561010, 3409983935, 9517788985, 26567708660, 74156653585, 206995196885, 577778464810, 1612754449235, 4501646773285
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,5},{1,5},40]
  • Maxima
    a[1]:1$ a[2]:5$ a[n]:=a[n-1]+5*a[n-2]$ makelist(a[n], n, 1, 29);  /* Bruno Berselli, May 24 2011 */
    
  • PARI
    a(n)=([0,1; 5,1]^(n-1)*[1;5])[1,1] \\ Charles R Greathouse IV, Oct 21 2022

Formula

G.f.: x*(1+4*x)/(1-x-5*x^2). - Bruno Berselli, May 24 2011
a(n+1) = Sum_{k=0..n} A119473(n,k)*4^k. - Philippe Deléham, Oct 05 2012

A189741 a(1)=4, a(2)=2, a(n) = 4*a(n-1) + 2*a(n-2).

Original entry on oeis.org

4, 2, 16, 68, 304, 1352, 6016, 26768, 119104, 529952, 2358016, 10491968, 46683904, 207719552, 924246016, 4112423168, 18298184704, 81417585152, 362266710016, 1611902010368, 7172141461504, 31912369866752, 141993762390016, 631799789293568, 2811186681954304
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,2},{4,2},40]
  • Maxima
    a[1]:4$ a[2]:2$ a[n]:=4*a[n-1]+2*a[n-2]$ makelist(a[n], n, 1, 25);  /* Bruno Berselli, May 24 2011 */

Formula

G.f.: 2*x*(2-7*x)/(1-4*x-2*x^2). - Bruno Berselli, May 24 2011

A189734 a(1)=2, a(2)=5, a(n)=2*a(n-1) + 5*a(n-2).

Original entry on oeis.org

2, 5, 20, 65, 230, 785, 2720, 9365, 32330, 111485, 384620, 1326665, 4576430, 15786185, 54454520, 187839965, 647952530, 2235104885, 7709972420, 26595469265, 91740800630, 316458947585, 1091621898320, 3765538534565, 12989186560730, 44806065794285
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,5},{2,5},40]
  • Maxima
    a[1]:2$ a[2]:5$ a[n]:=2*a[n-1]+5*a[n-2]$ makelist(a[n], n, 1, 26); /* Bruno Berselli, May 24 2011 */

Formula

G.f.: x*(2+x)/(1-2*x-5*x^2). - Bruno Berselli, May 24 2011

A189736 a(1)=3, a(2)=2, a(n)=3*a(n-1) + 2*a(n-2).

Original entry on oeis.org

3, 2, 12, 40, 144, 512, 1824, 6496, 23136, 82400, 293472, 1045216, 3722592, 13258208, 47219808, 168175840, 598967136, 2133253088, 7597693536, 27059586784, 96374147424, 343241615840, 1222473142368, 4353902658784, 15506654261088, 55227768100832
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,2},{3,2},40]
  • Maxima
    a[1]:3$ a[2]:2$ a[n]:=3*a[n-1]+2*a[n-2]$ makelist(a[n], n, 1, 26); /* Bruno Berselli, May 24 2011 */

Formula

G.f.: x*(3-7*x)/(1-3*x-2*x^2). - Bruno Berselli, May 24 2011

A189742 a(1)=4, a(2)=3, a(n) = 4*a(n-1) + 3*a(n-2).

Original entry on oeis.org

4, 3, 24, 105, 492, 2283, 10608, 49281, 228948, 1063635, 4941384, 22956441, 106649916, 495468987, 2301825696, 10693709745, 49680316068, 230802393507, 1072250522232, 4981409269449, 23142388644492, 107513782386315, 499482295478736, 2320470529073889
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,3},{4,3},40]
  • Maxima
    a[1]:4$ a[2]:3$ a[n]:=4*a[n-1]+3*a[n-2]$ makelist(a[n], n, 1, 24); /* Bruno Berselli, May 24 2011 */

Formula

G.f.: x*(4-13*x)/(1-4*x-3*x^2). - Bruno Berselli, May 24 2011

A189743 a(1)=4, a(2)=4, a(n) = 4*a(n-1) + 4*a(n-2).

Original entry on oeis.org

4, 4, 32, 144, 704, 3392, 16384, 79104, 381952, 1844224, 8904704, 42995712, 207601664, 1002389504, 4839964672, 23369416704, 112837525504, 544827768832, 2630661177344, 12701955784704, 61330467848192, 296129694531584, 1429840649519104, 6903881376202752
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,4},{4,4},40]
  • Maxima
    a[1]:4$ a[2]:4$ a[n]:=4*a[n-1]+4*a[n-2]$ makelist(a[n], n, 1, 24); /* Bruno Berselli, May 24 2011 */

Formula

G.f.: 4*x*(1-3*x)/(1-4*x-4*x^2). - Bruno Berselli, May 24 2011

A189744 a(1)=4, a(2)=5, a(n) = 4*a(n-1) + 5*a(n-2).

Original entry on oeis.org

4, 5, 40, 185, 940, 4685, 23440, 117185, 585940, 2929685, 14648440, 73242185, 366210940, 1831054685, 9155273440, 45776367185, 228881835940, 1144409179685, 5722045898440, 28610229492185, 143051147460940, 715255737304685, 3576278686523440, 17881393432617185
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Magma
    [5/2*(-1)^(n-1)+3/2*5^(n-1): n in [1..30]]; // Vincenzo Librandi, Jul 15 2011
    
  • Mathematica
    LinearRecurrence[{4,5},{4,5},40]
  • Maxima
    a[1]:4$ a[2]:5$ a[n]:=4*a[n-1]+5*a[n-2]$ makelist(a[n], n, 1, 24); /* Bruno Berselli, May 24 2011 */
    
  • PARI
    a(n)=5/2*(-1)^(n-1)+3/2*5^(n-1) \\ Charles R Greathouse IV, Jul 02 2013

Formula

G.f.: x*(4-11*x)/(1 - 4*x - 5*x^2). - Bruno Berselli, May 24 2011

A189745 a(n) = 5*a(n-1) + a(n-2); with a(1)=5, a(2)=1.

Original entry on oeis.org

5, 1, 10, 51, 265, 1376, 7145, 37101, 192650, 1000351, 5194405, 26972376, 140056285, 727253801, 3776325290, 19608880251, 101820726545, 528712512976, 2745383291425, 14255628970101, 74023528141930, 384373269679751, 1995889876540685, 10363822652383176
Offset: 1

Views

Author

Harvey P. Dale, Apr 26 2011

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,1},{5,1},40]
  • Maxima
    a[1]:5$ a[2]:1$ a[n]:=5*a[n-1]+a[n-2]$ makelist(a[n], n, 1, 24); /*
     Bruno Berselli, May 24 2011 */

Formula

G.f.: x*(5-24*x)/(1-5*x-x^2). - Bruno Berselli, May 24 2011
Showing 1-10 of 25 results. Next