A000129 Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).
0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
Offset: 0
Examples
G.f. = x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ... From _Enrique Navarrete_, Dec 15 2023: (Start) From the comment on compositions with Fibonacci number of parts, F(n), there are F(1)=1 type of 1, F(2)=1 type of 2, F(3)=2 types of 3, F(4)=3 types of 4, F(5)=5 types of 5 and F(6)=8 types of 6. The following table gives the number of compositions of n=6 with Fibonacci number of parts: Composition, number of such compositions, number of compositions of this type: 6, 1, 8; 5+1, 2, 10; 4+2, 2, 6; 3+3, 1, 4; 4+1+1, 3, 9; 3+2+1, 6, 12; 2+2+2, 1, 1; 3+1+1+1, 4, 8; 2+2+1+1, 6, 6; 2+1+1+1+1, 5, 5; 1+1+1+1+1+1, 1, 1; for a total of a(6)=70 compositions of n=6. (End).
References
- J. Austin and L. Schneider, Generalized Fibonacci sequences in Pythagorean triple preserving sequences, Fib. Q., 58:1 (2020), 340-350.
- P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 76.
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 941.
- J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 53.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
- John Derbyshire, Prime Obsession, Joseph Henry Press, 2004, see p. 16.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.1.
- Shaun Giberson and Thomas J. Osler, Extending Theon's Ladder to Any Square Root, Problem 3858, Elementa, No. 4 1996.
- R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
- Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 43.
- Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 61.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
- Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009, p. 90.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
- D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 62.
Links
- Simone Sandri, Table of n, a(n) for n = 0..1000 (first 500 terms from N. J. A. Sloane)
- M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Construction and composition of rooted trees via descent functions, Algebra, Volume 2013 (2013), Article ID 543913, 11 pages.
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
- Paraskevas K. Alvanos and Konstantinos A. Draziotis, Integer Solutions of the Equation y^2 = Ax^4 + B, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.4.
- Ayoub B. Ayoub, Fibonacci-like sequences and Pell equations, The College Mathematics Journal, Vol. 38 (2007), pp. 49-53.
- Ovidiu Bagdasar, Eve Hedderwick, and Ioan-Lucian Popa, On the ratios and geometric boundaries of complex Horadam sequences, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 63-70.
- Aseem R. Baranwal and Jeffrey Shallit, Critical exponent of infinite balanced words via the Pell number system, arXiv:1902.00503 [cs.FL], 2019.
- Elena Barcucci, Antonio Bernini, and Renzo Pinzani, A Gray code for a regular language, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, Motzkin paths with a restricted first return decomposition, Integers (2019) Vol. 19, A46.
- M. Barnabei, F. Bonetti, and M. Silimbani, Two permutation classes related to the Bubble Sort operator, Electronic Journal of Combinatorics 19(3) (2012), #P25.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 20, 29.
- Sarah-Marie Belcastro, Domino Tilings of 2 X n Grids (or Perfect Matchings of Grid Graphs) on Surfaces, J. Integer Seq. 26 (2023), Article 23.5.6.
- J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, El. J. Combinat. 21 (1) (2014) P1.7.
- Latham Boyle and Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- B. Bradie, Extensions and Refinements of some properties of sums involving Pell Numbers, Miss. J. Math. Sci 22 (1) (2010) 37-43.
- Jhon J. Bravo, Jose L. Herrera, and José L. Ramírez, Combinatorial Interpretation of Generalized Pell Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.2.1.
- Dorota Bród, On a New One Parameter Generalization of Pell Numbers, Annales Mathematicae Silesianae 33 (2019), 66-76.
- Steve Butler, Jason Ekstrand, and Steven Osborne, Counting Tilings by Taking Walks in a Graph, A Project-Based Guide to Undergraduate Research in Mathematics, Birkhäuser, Cham (2020), see page 165.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Geoffrey B. Campbell and Aleksander Zujev, Gaussian integer solutions for the fifth power taxicab number problem, arXiv:1511.07424 [math.NT], 2015.
- Frédéric Chapoton, A note on gamma triangles and local gamma vectors, arXiv:1809.00575 [math.CO], 2018.
- C. O. Chow, S. M. Ma, T. Mansour, and M. Shattuck, Counting permutations by cyclic peaks and valleys, Annales Mathematicae et Informaticae, (2014), Vol. 43, pp. 43-54.
- Hongshen Chua, A Study of Second-Order Linear Recurrence Sequences via Continuants, J. Int. Seq. (2023) Vol. 26, Art. 23.8.8.
- M. Couceiro, J. Devillet, and J.-L. Marichal, Quasitrivial semigroups: characterizations and enumerations, arXiv:1709.09162 [math.RA], 2017.
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- C. M. da Fonseca, Unifying some Pell and Fibonacci identities, Applied Mathematics and Computation, Volume 236, Jun 01 2014, Pages 41-42.
- Mahadi Ddamulira, On the x-coordinates of Pell equations which are products of two Pell numbers, arXiv:1906.06330 [math.NT], 2019.
- E. Deutsch, A formula for the Pell numbers, Problem 10663, Amer. Math. Monthly 107 (No. 4, 2000), solutions pp. 370-371.
- Antonio J. Di Scala, Nadir Murru, and Carlo Sanna, Lucas pseudoprimes and the Pell conic, arXiv:2001.00353 [math.NT], 2020.
- E. S. Egge and T. Mansour, 132-avoiding two-stack sortable permutations, Fibonacci numbers, and Pell numbers, arXiv:math/0205206 [math.CO], 2002.
- Shalosh B. Ekhad and Tewodros Amdeberhan, Solution to problem #10663 (AMM).
- C. Elsner, On Error Sums for Square Roots of Positive Integers with Applications to Lucas and Pell Numbers, J. Int. Seq. 17 (2014) # 14.4.4.
- E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242, Ex. 1, pp. 237-238.
- Sergio Falcón, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- Sergio Falcón, Generating Function of Some k-Fibonacci and k-Lucas Sequences, International Journal of Innovation in Science and Mathematics (2019) Vol. 7, Issue 2, 2347-9051.
- Sergio Falcón, Binomial Transform of the Generalized k-Fibonacci Numbers, Communications in Mathematics and Applications (2019) Vol. 10, No. 3, 643-651.
- Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Felix Flicker, Time quasilattices in dissipative dynamical systems, arXiv:1707.09371 [nlin.CD], 2017. Also SciPost Phys. 5, 001 (2018).
- Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Math. Publ. (2020) Vol. 12, No. 1, 34-45.
- Shaun Giberson and Thomas J. Osler, Extending Theon's Ladder to Any Square Root, College Mathematics Journal, May, 2004.
- Juan B. Gil and Aaron Worley, Generalized metallic means, arXiv:1901.02619 [math.NT], 2019.
- Taras Goy, Pell numbers identities from Toeplitz-Hessenberg determinants, Novi Sad J. Math., 49 (2) (2019), 87-94.
- Martin Griffiths, Pell identities via a quadratic field, International Journal of Mathematical Education in Science and Technology, 2013.
- R. P. Grimaldi, Tilings, Compositions, and Generalizations, J. Int. Seq. 13 (2010), 10.6.5.
- M. A. Gruber, Artemas Martin, A. H. Bell, J. H. Drummond, A. H. Holmes and H. C. Wilkes, Problem 47, Amer. Math. Monthly, 4 (1897), 25-28.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- R. J. Hetherington, Letter to N. J. A. Sloane, Oct 26 1974
- Gábor Hetyei, The type B permutohedron and the poset of intervals as a Tchebyshev transform, University of North Carolina-Charlotte (2019).
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Nick Hobson, Python program for this sequence
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- A. F. Horadam, Special Properties of the Sequence W(n){a,b; p,q}, Fib. Quart., Vol. 5, No. 5 (1967), pp. 424-434.
- A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252, 263.
- Haruo Hosoya, What Can Mathematical Chemistry Contribute to the Development of Mathematics?, HYLE--International Journal for Philosophy of Chemistry, Vol. 19, No.1 (2013), pp. 87-105.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 135
- Milan Janjić, On Linear Recurrence Equations Arising from Compositions of Positive Integers, J. Int. Seq. 18 (2015), #15.4.7.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- Tanya Khovanova, Recursive Sequences.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- C. J. Kirchen, Letter to N. J. A. Sloane, Feb 11 1974.
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16.
- K. Kuhapatanakul, On the Sums of Reciprocal Generalized Fibonacci Numbers, J. Int. Seq. 16 (2013) #13.7.1.
- Pablo Lam-Estrada, Myriam Rosalía Maldonado-Ramírez, José Luis López-Bonilla, and Fausto Jarquín-Zárate, The sequences of Fibonacci and Lucas for each real quadratic fields Q(Sqrt(d)), arXiv:1904.13002 [math.NT], 2019.
- Shirley Law, Hopf Algebra of Sashes, in FPSAC 2014, Chicago, USA; Discrete Mathematics and Theoretical Computer Science (DMTCS) Proceedings, 2014, 621-632.
- H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 46.
- Édouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article Théorie des Fonctions Numériques Simplement Périodiques, I, Amer. J. Math., 1 (1878), 184-240.
- T. Mansour and M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
- A. Moghaddamfar and H. Tajbakhsh, More Determinant Representations for Sequences, Journal of Integer Sequences, 17 (2014), #14.5.6.
- Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, arXiv:1812.00170 [math.CO], 2018-2020.
- Sophie Morier-Genoud and Valentin Ovsienko, q-deformed rationals and q-continued fractions, (2019) [math].
- Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
- Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, Survey of Cubic Fibonacci Identities - When Cuboids Carry Weight, arXiv:1902.05944 [math.HO], 2019.
- Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
- Ahmet Öteleş, Zekeriya Y. Karata, and Diyar O. Mustafa Zangana, Jacobsthal Numbers and Associated Hessenberg Matrices, J. Int. Seq., 21 (2018), #18.2.5.
- Arzu Özkoç, Some algebraic identities on quadra Fibona-Pell integer sequence, Advances in Difference Equations, 2015, 2015:148.
- Hao Pan, Arithmetic properties of q-Fibonacci numbers and q-Pell numbers, Discr. Math., 306 (2006), 2118-2127.
- D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.
- Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Raul Prisacariu, Generating k-Pell Infinite Series Using Whittaker's Formula, The Mathematics Enthusiast: Vol. 15 : No. 3, Article 7, 2018.
- C. Raissi and J. Pei, Towards Bounding Sequential Patterns, KDD'11, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011.
- Franck Ramaharo, An approximate Jerusalem square whose side equals a Pell number, arXiv:1801.00466 [math.CO], 2018.
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- J. L. Schiffman, Exploring the Fibonacci sequence of order two with CAS technology, Electronic Proceedings of the Twenty-fourth Annual International Conference on Technology in Collegiate Mathematics, Orlando, Florida, March 22-25, 2012, Paper C027.
- Jon E. Schoenfield, Prime factorization of a(n) for n = 1..630. (a(422) corrected by Amiram Eldar)
- James A. Sellers, Domino Tilings and Products of Fibonacci and Pell Numbers, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.2.
- Mark Shattuck, Tiling proofs of some formulas for the Pell numbers of odd index, Integers, 9 (2009), 53-64.
- Mark Shattuck, Combinatorial Proofs of Some Formulas for Triangular Tilings, Journal of Integer Sequences, 17 (2014), #14.5.5.
- Joseph M. Shunia, Polynomial Quotient Rings and Kronecker Substitution for Deriving Combinatorial Identities, arXiv preprint arXiv:2404.00332 [math.GM], 2024.
- Nanci Smith, Problem B-82 An Integer Valued Function, Fib. Quart., 4 (1966), 374-375.
- Yüksel Soykan, On Generalized Third-Order Pell Numbers, Asian Journal of Advanced Research and Reports (2019) Vol. 6, No. 1, Article No. AJARR.51635, 1-18.
- Yüksel Soykan, On Summing Formulas For Generalized Fibonacci and Gaussian Generalized Fibonacci Numbers, Advances in Research (2019) Vol. 20, No. 2, 1-15, Article No. AIR.51824.
- Yüksel Soykan, On generalized sixth-order Pell sequences, Journal of Scientific Perspectives (2020) Vol. 4, No. 1, 49-70.
- Yüksel Soykan, Generalized Fibonacci Numbers: Sum Formulas, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 1, 89-104.
- Yüksel Soykan, Closed Formulas for the Sums of Squares of Generalized Fibonacci Numbers, Asian Journal of Advanced Research and Reports (2020) Vol. 9, No. 1, 23-39, Article no. AJARR.55441.
- Yüksel Soykan, Closed Formulas for the Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of Sum_{k=0..n} W_k^3 and Sum_{k=1..n} W_(-k)^3, Archives of Current Research International (2020) Vol. 20, Issue 2, 58-69.
- Yüksel Soykan, A Study on Generalized Fibonacci Numbers: Sum Formulas Sum_{k=0..n} k * x^k * W_k^3 and Sum_{k=1..n} k * x^k W_-k^3 for the Cubes of Terms, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 297-331.
- Yüksel Soykan, Mehmet Gümüş, and Melih Göcen, A Study On Dual Hyperbolic Generalized Pell Numbers, Malaya Journal of Matematik, vol. 9, no. 03, July 2021, pp. 99-116.
- Robin James Spivey, Close encounters of the golden and silver ratios, Notes on Number Theory and Discrete Mathematics (2019) Vol. 25, No. 3, 170-184.
- R. A. Sulanke, Moments, Narayana numbers and the cut and paste for lattice paths
- Ping Sun, Enumeration of standard Young tableaux of shifted strips with constant width, arXiv:1506.07256 [math.CO], 24 Jun 2015.
- Tamas Szakacs, Convolution of second order linear recursive sequences I, Ann. Math. Inform. 46 (2016), 205-216.
- Wipawee Tangjai, A Non-standard Ternary Representation of Integers, Thai J. Math (2020) Special Issue: Annual Meeting in Mathematics 2019, 269-283.
- Gy. Tasi and F. Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
- A. Tekcan, M. Tayat, and M. E. Ozbek, The diophantine equation 8x^2-y^2+8x(1+t)+(2t+1)^2=0 and t-balancing numbers, ISRN Combinatorics, Volume 2014, Article ID 897834, 5 pages.
- P. E. Trier, "Almost Isosceles" Right-Angled Triangles, Eureka, No. 4, May 1940, pp. 9 - 11.
- Andrew Vince, The average size of a connected vertex set of a graph-explicit formulas and open problems, University of Florida (2019).
- Ian Walker, Explorations in Recursion with John Pell and the Pell Sequence.
- Kai Wang, On k-Fibonacci Sequences And Infinite Series List of Results and Examples, 2020.
- Eric Weisstein's World of Mathematics, Centipede Graph.
- Eric Weisstein's World of Mathematics, Independent Edge Set.
- Eric Weisstein's World of Mathematics, Matching.
- Eric Weisstein's World of Mathematics, Pell Number.
- Eric Weisstein's World of Mathematics, Pell Polynomial.
- Eric Weisstein's World of Mathematics, Pythagoras's Constant.
- Eric Weisstein's World of Mathematics, Square Root.
- Eric Weisstein's World of Mathematics, Square Triangular Number.
- Meral Yasar and Durmus Bozkurt, Another proof of Pell identities by using the determinant of tridiagonal matrix, Appl. Math. Comput., 218 (2012), pp. 6067-6071.
- Leon Zaporski and Felix Flicker, Superconvergence of Topological Entropy in the Symbolic Dynamics of Substitution Sequences, arXiv:1811.00331 [nlin.CD], 2018.
- Abdelmoumène Zekiri, Farid Bencherif, and Rachid Boumahdi, Generalization of an Identity of Apostol, J. Int. Seq., Vol. 21 (2018), Article 18.5.1.
- Jianqiang Zhao, Finite Multiple zeta Values and Finite Euler Sums, arXiv preprint arXiv:1507.04917 [math.NT], 2015.
- Index entries for "core" sequences.
- Index entries for sequences related to Chebyshev polynomials.
- Index to divisibility sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,1).
Crossrefs
Partial sums of A001333.
2nd row of A172236.
a(n) = A054456(n-1, 0), n>=1 (first column of triangle).
Cf. A175181 (Pisano periods), A214028 (Entry points), A214027 (number of zeros in a fundamental period).
A077985 is a signed version.
INVERT transform of Fibonacci numbers (A000045).
Cf. A038207.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A034867, A131980, A133156, A143808, A135387, A153346, A001622, A006497, A014176 (growth power), A098316, A154325, A021083, A243399, A008555.
Cf. A048739.
Cf. A073133.
Cf. A041085.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), this sequence (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).
Programs
-
GAP
a := [0,1];; for n in [3..10^3] do a[n] := 2 * a[n-1] + a[n-2]; od; A000129 := a; # Muniru A Asiru, Oct 16 2017
-
Haskell
a000129 n = a000129_list !! n a000129_list = 0 : 1 : zipWith (+) a000129_list (map (2 *) $ tail a000129_list) -- Reinhard Zumkeller, Jan 05 2012, Feb 05 2011
-
Magma
[0] cat [n le 2 select n else 2*Self(n-1) + Self(n-2): n in [1..35]]; // Vincenzo Librandi, Aug 08 2015
-
Maple
A000129 := proc(n) option remember; if n <=1 then n; else 2*procname(n-1)+procname(n-2); fi; end; a:= n-> (<<2|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008 A000129 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1)): seq(simplify(A000129(n)), n=0..31); # Peter Luschny, Dec 17 2015
-
Mathematica
CoefficientList[Series[x/(1 - 2*x - x^2), {x, 0, 60}], x] (* Stefan Steinerberger, Apr 08 2006 *) Expand[Table[((1 + Sqrt[2])^n - (1 - Sqrt[2])^n)/(2Sqrt[2]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *) LinearRecurrence[{2, 1}, {0, 1}, 60] (* Harvey P. Dale, Jan 04 2012 *) a[ n_] := With[ {s = Sqrt@2}, ((1 + s)^n - (1 - s)^n) / (2 s)] // Simplify; (* Michael Somos, Jun 01 2013 *) Table[Fibonacci[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, May 08 2016 *) Fibonacci[Range[0, 20], 2] (* Eric W. Weisstein, Sep 30 2017 *) a[ n_] := ChebyshevU[n - 1, I] / I^(n - 1); (* Michael Somos, Oct 30 2021 *)
-
Maxima
a[0]:0$ a[1]:1$ a[n]:=2*a[n-1]+a[n-2]$ A000129(n):=a[n]$ makelist(A000129(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
Maxima
makelist((%i)^(n-1)*ultraspherical(n-1,1,-%i),n,0,24),expand; /* Emanuele Munarini, Mar 07 2018 */
-
PARI
for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[2, 1]; if (a > 10^(10^3 - 6), break); write("b000129.txt", n, " ", a)); \\ Harry J. Smith, Jun 12 2009
-
PARI
{a(n) = imag( (1 + quadgen( 8))^n )}; /* Michael Somos, Jun 01 2013 */
-
PARI
{a(n) = if( n<0, -(-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [2, 1]}; /* Michael Somos, Jun 01 2013 */
-
PARI
a(n)=([2, 1; 1, 0]^n)[2,1] \\ Charles R Greathouse IV, Mar 04 2014
-
PARI
{a(n) = polchebyshev(n-1, 2, I) / I^(n-1)}; /* Michael Somos, Oct 30 2021 */
-
Python
from itertools import islice def A000129_gen(): # generator of terms a, b = 0, 1 yield from [a,b] while True: a, b = b, a+2*b yield b A000129_list = list(islice(A000129_gen(),20)) # Chai Wah Wu, Jan 11 2022
-
Sage
[lucas_number1(n, 2, -1) for n in range(30)] # Zerinvary Lajos, Apr 22 2009
Formula
G.f.: x/(1 - 2*x - x^2). - Simon Plouffe in his 1992 dissertation.
G.f.: Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (2*k + x)/(1 + 2*k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 1 + k)/(1 + k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 3 - k)/(1 - k*x) ) may all be proved using telescoping series. - Peter Bala, Jan 04 2015
a(n) = 2*a(n-1) + a(n-2), a(0)=0, a(1)=1.
a(n) = ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/(2*sqrt(2)).
For initial values a(0) and a(1), a(n) = ((a(0)*sqrt(2)+a(1)-a(0))*(1+sqrt(2))^n + (a(0)*sqrt(2)-a(1)+a(0))*(1-sqrt(2))^n)/(2*sqrt(2)). - Shahreer Al Hossain, Aug 18 2019
a(n) = integer nearest a(n-1)/(sqrt(2) - 1), where a(0) = 1. - Clark Kimberling
a(n) = Sum_{i, j, k >= 0: i+j+2k = n} (i+j+k)!/(i!*j!*k!).
a(n)^2 + a(n+1)^2 = a(2n+1) (1999 Putnam examination).
a(2n) = 2*a(n)*A001333(n). - John McNamara, Oct 30 2002
a(n) = ((-i)^(n-1))*S(n-1, 2*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(-2, x)= -1.
Binomial transform of expansion of sinh(sqrt(2)x)/sqrt(2). E.g.f.: exp(x)sinh(sqrt(2)x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k+1)*2^k. - Paul Barry, May 13 2003
a(n-2) + a(n) = (1 + sqrt(2))^(n-1) + (1 - sqrt(2))^(n-1) = A002203(n-1). (A002203(n))^2 - 8(a(n))^2 = 4(-1)^n. - Gary W. Adamson, Jun 15 2003
Unreduced g.f.: x(1+x)/(1 - x - 3x^2 - x^3); a(n) = a(n-1) + 3*a(n-2) + a(n-2). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*2^(n-2k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
Apart from initial terms, inverse binomial transform of A052955. - Paul Barry, May 23 2004
a(n)^2 + a(n+2k+1)^2 = A001653(k)*A001653(n+k); e.g., 5^2 + 70^2 = 5*985. - Charlie Marion Aug 03 2005
a(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*2^k/2. - Paul Barry, Aug 28 2005
a(n) = a(n-1) + A001333(n-1) = A001333(n) - a(n-1) = A001109(n)/A001333(n) = sqrt(A001110(n)/A001333(n)^2) = ceiling(sqrt(A001108(n)/2)). - Henry Bottomley, Apr 18 2000
a(n) = F(n, 2), the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
Define c(2n) = -A001108(n), c(2n+1) = -A001108(n+1) and d(2n) = d(2n+1) = A001652(n); then ((-1)^n)*(c(n) + d(n)) = a(n). [Proof given by Max Alekseyev.] - Creighton Dement, Jul 21 2005
a(r+s) = a(r)*a(s+1) + a(r-1)*a(s). - Lekraj Beedassy, Sep 03 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A006645. - Sergio Falcon, Nov 22 2006
From Miklos Kristof, Mar 19 2007: (Start)
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m).
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m).
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k).
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 8*F(n)*F(m)*F(k). (End)
a(n+1)*a(n) = 2*Sum_{k=0..n} a(k)^2 (a similar relation holds for A001333). - Creighton Dement, Aug 28 2007
a(n+1) = Sum_{k=0..n} binomial(n+1,2k+1) * 2^k = Sum_{k=0..n} A034867(n,k) * 2^k = (1/n!) * Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
Equals row sums of unsigned triangle A133156. - Gary W. Adamson, Apr 21 2008
a(n) (n >= 3) is the determinant of the (n-1) X (n-1) tridiagonal matrix with diagonal entries 2, superdiagonal entries 1 and subdiagonal entries -1. - Emeric Deutsch, Aug 29 2008
a(n) = A000045(n) + Sum_{k=1..n-1} A000045(k)*a(n-k). - Roger L. Bagula and Gary W. Adamson, Sep 07 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
fract((1+sqrt(2))^n) = (1/2)*(1 + (-1)^n) - (-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1 + (-1)^n) - (1-sqrt(2))^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x > 1, which satisfy x - x^(-1) = floor(x).
a(n) = round((1+sqrt(2))^n/(2*sqrt(2))) for n > 0. (End) [last formula corrected by Josh Inman, Mar 05 2024]
a(n) = ((4+sqrt(18))*(1+sqrt(2))^n + (4-sqrt(18))*(1-sqrt(2))^n)/4 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
If p[i] = Fibonacci(i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1] when i<=j, A[i,j]=-1 when i=j+1, and A[i,j]=0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n > 2. - Gary Detlefs, Sep 09 2010
From Charlie Marion, Apr 13 2011: (Start)
a(n) = 2*(a(2k-1) + a(2k))*a(n-2k) - a(n-4k).
a(n) = 2*(a(2k) + a(2k+1))*a(n-2k-1) + a(n-4k-2). (End)
G.f.: x/(1 - 2*x - x^2) = sqrt(2)*G(0)/4; G(k) = ((-1)^k) - 1/(((sqrt(2) + 1)^(2*k)) - x*((sqrt(2) + 1)^(2*k))/(x + ((sqrt(2) - 1)^(2*k + 1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
In general, for n > k, a(n) = a(k+1)*a(n-k) + a(k)*a(n-k-1). See definition of Pell numbers and the formula for Sep 04 2008. - Charlie Marion, Jan 17 2012
Sum{n>=1} (-1)^(n-1)/(a(n)*a(n+1)) = sqrt(2) - 1. - Vladimir Shevelev, Feb 22 2013
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = a(n) + sqrt(2*a^2(n) + (-1)^n);
(2) a(n+1)^2 - a(n)*a(n+2) = (-1)^n;
(3) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(4) a(n)/a(n+1) = sqrt(2) - 1 + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
a(-n) = -(-1)^n * a(n). - Michael Somos, Jun 01 2013
G.f.: G(0)/(2+2*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 10 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{r=0..n-1} Sum_{k=0..n-r-1} binomial(r+k,k)*binomial(k,n-k-r-1). - Peter Luschny, Nov 16 2013
a(n) = Sum_{k=1,3,5,...<=n} C(n,k)*2^((k-1)/2). - Vladimir Shevelev, Feb 06 2014
a(2n) = 2*a(n)*(a(n-1) + a(n)). - John Blythe Dobson, Mar 08 2014
a(k*n) = a(k)*a(k*n-k+1) + a(k-1)*a(k*n-k). - Charlie Marion, Mar 27 2014
a(k*n) = 2*a(k)*(a(k*n-k)+a(k*n-k-1)) + (-1)^k*a(k*n-2k). - Charlie Marion, Mar 30 2014
a(n+1) = (1+sqrt(2))*a(n) + (1-sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n+1) = (1-sqrt(2))*a(n) + (1+sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n) = F(n) + Sum_{k=1..n} F(k)*a(n-k), n >= 0 where F(n) the Fibonacci numbers A000045. - Ralf Stephan, May 23 2014
a(n) = round(sqrt(a(2n) + a(2n-1)))/2. - Richard R. Forberg, Jun 22 2014
a(n+k)^2 - A002203(k)*a(n)*a(n+k) + (-1)^k*a(n)^2 = (-1)^n*a(k)^2. - Alexander Samokrutov, Aug 06 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1) for n >= 2. - Peter Luschny, Dec 17 2015
a(n+1) = Sum_{k=0..n} binomial(n,k)*2^floor(k/2). - Tony Foster III, May 07 2017
a(n) = exp((i*Pi*n)/2)*sinh(n*arccosh(-i))/sqrt(2). - Peter Luschny, Mar 07 2018
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)^2 - a(n-2)^2 = 2*a(n-1)*(a(n) + a(n-2)) (see A005319);
(2) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(3) Sum_{k=2..n+1} a(k)*a(k-1) = a(n+1)^2 if n is odd, else a(n+1)^2 - 1 if n is even;
(4) a(n) - a(n-2*k+1) = (A077444(k) - 1)*a(n-2*k+1) + a(n-4*k+2);
(5) Sum_{k=n..n+9} a(k) = 41*A001333(n+5). (End)
From Kai Wang, Dec 30 2019: (Start)
a(m+r)*a(n+s) - a(m+s)*a(n+r) = -(-1)^(n+s)*a(m-n)*a(r-s).
From Kai Wang, Jan 12 2020: (Start)
a(n)^2 - a(n+1)*a(n-1) = (-1)^(n-1).
a(n)^2 - a(n+r)*a(n-r) = (-1)^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = (-1)^n*a(m-n).
From Kai Wang, Mar 03 2020: (Start)
Sum_{m>=1} arctan(2/a(2*m+1)) = arctan(1/2).
Sum_{m>=2} arctan(2/a(2*m+1)) = arctan(1/12).
In general, for n > 0,
Sum_{m>=n} arctan(2/a(2*m+1)) = arctan(1/a(2*n)). (End)
a(n) = (A001333(n+3*k) + (-1)^(k-1)*A001333(n-3*k)) / (20*A041085(k-1)) for any k>=1. - Paul Curtz, Jun 23 2021
Sum_{i=0..n} a(i)*J(n-i) = (a(n+1) + a(n) - J(n+2))/2 for J(n) = A001045(n). - Greg Dresden, Jan 05 2022
From Peter Bala, Aug 20 2022: (Start)
Sum_{n >= 1} 1/(a(2*n) + 1/a(2*n)) = 1/2.
Product_{n >= 1} ( 1 + 2/a(2*n) ) = 1 + sqrt(2).
Product_{n >= 2} ( 1 - 2/a(2*n) ) = (1/3)*(1 + sqrt(2)). (End)
G.f. = 1/(1 - Sum_{k>=1} Fibonacci(k)*x^k). - Enrique Navarrete, Dec 17 2023
Sum_{n >=1} 1/a(n) = 1.84220304982752858079237158327980838... - R. J. Mathar, Feb 05 2024
a(n) = ((3^(n+1) + 1)^(n-1) mod (9^(n+1) - 2)) mod (3^(n+1) - 1). - Joseph M. Shunia, Jun 06 2024
Comments