cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103665 Primes p such that the number of divisors of p-1 is greater than the number of divisors of p+1.

Original entry on oeis.org

13, 31, 37, 43, 61, 67, 73, 97, 101, 109, 113, 127, 151, 157, 163, 181, 193, 211, 229, 241, 257, 271, 277, 281, 283, 313, 331, 337, 353, 373, 379, 397, 401, 409, 421, 433, 457, 463, 487, 521, 523, 541, 547, 571, 577, 601, 613, 617, 631, 641, 661, 673, 677
Offset: 1

Views

Author

Hugo Pfoertner, Feb 19 2005

Keywords

Comments

Mathematica coding by Wouter Meeussen and Robert G. Wilson v.

Examples

			a(1)=13 because d(12)=6 > d(14)=4.
		

Crossrefs

Cf. A008328 number of divisors of p-1, A008329 number of divisors of p+1, A103664, A103666, A103667.

Programs

  • Mathematica
    Select[Prime[Range[2, 140]], Length[Divisors[ # - 1]] > Length[Divisors[ # + 1]] &]
    Select[Prime[Range[200]],DivisorSigma[0,#-1]>DivisorSigma[0,#+1]&] (* Harvey P. Dale, Aug 21 2022 *)
  • PARI
    forprime (k=2,700,if(numdiv(k-1)>numdiv(k+1),print1(k,", ")))
    \\ Hugo Pfoertner, Nov 30 2017

A145337 a(n) = d(p(n)+1) - d(p(n)-1), where d(m) = the number of divisors of m, p(n) = the n-th prime.

Original entry on oeis.org

1, 1, 1, 0, 2, -2, 1, 0, 4, 2, -2, -5, 0, -2, 6, 2, 8, -8, -2, 4, -8, 2, 8, 4, -6, -1, 0, 8, -4, -2, -4, 4, 0, 4, 6, -4, -8, -4, 12, 2, 14, -10, 6, -10, 3, 0, -10, 4, 8, -4, 4, 12, -14, 10, -1, 12, 10, -6, -8, -8, -2, 6, 0, 8, -12, 2, -10, -14, 8, 0, -4, 20, 2, -4, -4, 12, 10, -14, -7, -8
Offset: 0

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A008329(n) - A008328(n). - R. J. Mathar, Oct 10 2008

Extensions

More terms from R. J. Mathar and Ray Chandler, Oct 10 2008

A145339 a(n) = the minimum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 4, 6, 6, 4, 8, 6, 4, 6, 4, 4, 6, 8, 4, 8, 4, 8, 6, 8, 8, 4, 8, 8, 8, 8, 8, 8, 6, 8, 4, 6, 4, 6, 4, 8, 8, 4, 9, 12, 6, 8, 4, 8, 8, 8, 6, 8, 8, 4, 6, 10, 4, 8, 6, 6, 12, 8, 4, 6, 6, 6, 4, 12, 8, 4, 8, 8, 12, 4, 6, 4, 8, 8, 8, 4, 8, 8, 8, 8, 14, 4, 12, 10, 4, 4, 8, 12, 8, 4, 6, 12, 6, 4, 6
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Min[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)
  • PARI
    a(n) = my(p = prime(n)); min(numdiv(p-1), numdiv(p+1)); \\ Michel Marcus, Sep 28 2018

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008

A103886 Rearrangement of prime numbers p according to number of divisors of p-/+1.

Original entry on oeis.org

2, 7, 13, 3, 19, 31, 5, 41, 37, 11, 103, 43, 17, 137, 61, 23, 199, 67, 29, 307, 73, 47, 349, 97, 53, 491, 101, 59, 739, 109
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Comments

Number of divisors of p-1 (less than, equals and larger than) number of divisors of p+1. A103887 - position of p(n) in the sequence.

Crossrefs

Programs

Formula

a(3k-2)=A103664(k); a(3k-1)=A067889(k); a(3k)=A103665(k); (k=1, 2, ...)

A103887 Position of p(n) in rearrangement of prime numbers A103886.

Original entry on oeis.org

1, 4, 7, 2, 10, 3, 13, 5, 16, 19, 6, 9, 8, 12, 22, 25, 28, 15, 18
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Position[A103886, Prime[n]], {n, 19}]//Flatten

A145340 a(n) = the maximum of d(p(n)-1) and d(p(n)+1), where d(m) is the number of divisors of m and p(n) is the n-th prime.

Original entry on oeis.org

2, 3, 4, 4, 6, 6, 6, 6, 8, 8, 8, 9, 8, 8, 10, 8, 12, 12, 8, 12, 12, 10, 12, 12, 12, 9, 8, 12, 12, 10, 12, 12, 8, 12, 12, 12, 12, 10, 16, 8, 18, 18, 14, 14, 12, 12, 16, 12, 12, 12, 12, 20, 20, 18, 9, 16, 16, 16, 12, 16, 8, 12, 12, 16, 16, 8, 16, 20, 12, 12, 12, 24, 10, 12, 16, 16, 16
Offset: 1

Views

Author

Leroy Quet, Oct 08 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[DivisorSigma[0, Prime[n]-1], DivisorSigma[0, Prime[n]+1]], {n, 1, 100}] (* Stefan Steinerberger, Oct 11 2008 *)

Extensions

More terms from Stefan Steinerberger and Ray Chandler, Oct 11 2008
Showing 1-6 of 6 results.