A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
Offset: 1
Keywords
Examples
a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5. a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1500 from Eric Chen)
- Wikipedia, Bunyakowsky conjecture
Crossrefs
Programs
-
Maple
f:= proc(n) local k; for k from 2 do if isprime(numtheory:-cyclotomic(n,k)) then return k fi od end proc: seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
-
Mathematica
Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
-
PARI
a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014
Comments