cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A052041 Squares lacking the digit zero in their decimal expansion.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 121, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 961, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2116, 2916, 3136, 3249, 3364, 3481, 3721, 3844, 3969, 4225, 4356
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite: see A075415 or A102807 for a constructive proof.
Intersection of A052382 and A000290; A168046(a(n))*A010052(a(n))=1. - Reinhard Zumkeller, Dec 01 2009

Crossrefs

Programs

  • Mathematica
    Select[Range[66]^2, FreeQ[IntegerDigits[#],0]==True &] (* Jayanta Basu, May 25 2013 *)

Formula

a(n) = A052040(n)^2. - R. J. Mathar, Jul 23 2025

A124648 Numbers n such that n^i (i=1..7) are all zeroless.

Original entry on oeis.org

1, 2, 3, 5, 6, 68, 76, 3944, 15483
Offset: 1

Views

Author

Zak Seidov, Dec 22 2006

Keywords

Comments

No other terms < 10^8. - Michel Marcus, Oct 11 2013
No other terms < 10^13. - Charles R Greathouse IV, Oct 14 2013
Subsequence of A253647, the analog with i <= 6 instead of 7. Conjectured to be finite. - M. F. Hasler, Jan 07 2015
a(10) > 3.3*10^16, if it exists. - Giovanni Resta, Sep 06 2018

Examples

			15483^i (i=1..7) = 15483, 239723289, 3711635683587, 57467255288977521, 889765513639238957643, 13776239447676336781186569, 213297515368372722383111647827 all zeroless.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], FreeQ[Union[IntegerDigits[ # ],IntegerDigits[ #^2],IntegerDigits[ #^3],IntegerDigits[ #^4],IntegerDigits[ #^5],IntegerDigits[ #^6],IntegerDigits[ #^7]],0]&]
    Select[Range[15500],FreeQ[Flatten[IntegerDigits/@(#^Range[7])],0]&] (* Harvey P. Dale, Jan 14 2024 *)
  • PARI
    isok(n) = {for (i = 1, 7, if (! vecmin(digits(n^i)), return (0));); return (1);} \\ Michel Marcus, Oct 11 2013
    
  • PARI
    \\ Script for checking for large (> 10^9) members:
    is(n)=for(i=1,7,if(vecmin(digits(n^i))==0, return(0))); 1
    bad(n,d)=for(k=1,d,if(n%10==0,return(1));n\=10);0
    good7(n,d)=my(t=1);for(i=1,7,if(bad(lift(t*=n),d),return(0)));1
    left(d)=my(v=List(),m=10^d);for(i=0,10^d-1, if(good7(Mod(i,m),d), listput(v,i)));Vec(v)
    diff(v)=vector(#v-1,i,v[i+1]-v[i])
    L=left(9);D=diff(concat(L,10^9+L[1]));forstep(n=L[1],1e12,D, if(is(n),print(n))) \\ Charles R Greathouse IV, Oct 14 2013

A124649 Numbers n such that n^i (i=1..8) are all zeroless.

Original entry on oeis.org

1, 2, 3, 6, 68
Offset: 1

Views

Author

Zak Seidov, Dec 22 2006

Keywords

Comments

No other terms < 10^6. Is the sequence finite?
Subsequence of A124648. No other terms below 10^8. - Michel Marcus, Oct 11 2013
a(6) > 3.3*10^16, if it exists. - Giovanni Resta, Sep 07 2018

Examples

			68^i (i=1..8)= 68, 4624, 314432, 21381376, 1453933568, 98867482624, 6722988818432, 457163239653376 all zeroless.
		

Crossrefs

Cf. A104264.

Programs

  • Mathematica
    zLessQ[n_]:=AllTrue[n^Range[8],FreeQ[IntegerDigits[#],0]&]; Select[Range[70],zLessQ] (* Harvey P. Dale, Sep 27 2023 *)
  • PARI
    isok(n) = {for (i = 1, 8, if (! vecmin(digits(n^i)), return (0));); return (1);} \\ Michel Marcus, Oct 11 2013

A253647 Numbers n such that n^k is zeroless for k=0,...,6.

Original entry on oeis.org

1, 2, 3, 5, 6, 14, 17, 68, 76, 96, 188, 483, 518, 582, 736, 786, 1331, 1414, 3944, 4214, 6112, 6676, 8256, 8583, 8686, 9738, 15314, 15483, 33736, 44712, 48989, 61562, 71689, 78512, 93711, 121568, 187791, 239477, 292958, 315426, 545866, 763142, 792612, 1391739
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

Contains A124648 as a subsequence. Primes in this sequence are listed in A253646.
There are 55 terms below 10^7. Conjectured to be finite.

Crossrefs

Programs

  • Mathematica
    Select[Range[14*10^5],Count[Flatten[IntegerDigits/@(#^Range[ 0,6])],0] == 0&] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    is_A253647(n,K=6)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A252484 Numbers m such that m^k is zeroless for k=1,...,4.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 17, 21, 23, 24, 26, 27, 28, 31, 36, 39, 41, 46, 56, 58, 61, 62, 66, 68, 72, 76, 82, 83, 88, 91, 92, 96, 121, 122, 129, 137, 146, 154, 161, 162, 166, 167, 168, 183, 186, 188, 189, 211, 231, 233, 244, 256, 262, 264, 268, 277, 278, 289, 296, 337, 373, 374, 376, 382, 383
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

See A253110 for the primes in this sequence. See A253644 for the subsequence including k=5.

Crossrefs

Cf. A052382, A253643 (k <= 3), A253644 (k <= 5), A253645 (primes, k <= 5), A253647 (k <= 6), A253646 (primes, k <= 6), A124648 (k <= 7), A124649 (k <= 8).
Cf. A104264.

Programs

  • Maple
    filter:= proc(n)
    local j;
    for j from 0 to 4 do
      if has(convert(n^j,base,10),0) then return false fi
    od:
    true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 15 2015
  • Mathematica
    Select[Range[400],Union[DigitCount[#^Range[4],10,0]]=={0}&] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    is_A252484(n,K=4)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A253644 Numbers n such that n^k is zeroless for k=0,...,5.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 17, 23, 24, 26, 31, 58, 62, 66, 68, 72, 76, 88, 96, 137, 168, 188, 233, 244, 262, 264, 296, 337, 376, 382, 383, 483, 488, 511, 514, 518, 519, 582, 628, 719, 736, 786, 816, 822, 928, 938, 971, 978, 1122, 1178, 1291, 1331, 1392, 1413, 1414, 1663, 1777
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

A subsequence of A252484 (analog for k <= 4) which contains A253647 (analog including k = 6) as a subsequence. Primes in this sequence are listed in A253645.
Conjectured to be finite.

Crossrefs

Programs

  • Maple
    filter:= proc(x)
      local k;
      for k from 1 to 5 do
        if has(convert(x^k,base,10),0) then return false fi
      od:
      true
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 07 2015
  • Mathematica
    Select[Range[2000],Count[Flatten[IntegerDigits/@(#^Range[5])],0]==0&] (* Harvey P. Dale, Jun 10 2017 *)
  • PARI
    is_A253644(n,K=5)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A104265 Smallest n-digit square with no zero digits.

Original entry on oeis.org

1, 16, 121, 1156, 11236, 111556, 1115136, 11115556, 111112681, 1111155556, 11111478921, 111111555556, 1111118377216, 11111115555556, 111111226346761, 1111111155555556, 11111112515384644, 111111111555555556, 1111111112398242916, 11111111115555555556, 111111111113333185156, 1111111111155555555556
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2005

Keywords

Examples

			a(3) = Min{121, 144, 169, 196, ....} = 121.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = Ceiling[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k++ ]; k^2]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Mar 02 2005 *)
    snds[n_]:=Module[{c=Ceiling[Sqrt[FromDigits[Join[PadRight[{},n-1,1], {0}]]]]^2},While[DigitCount[c,10,0]>0,c=(1+Sqrt[c])^2];c]; Array[ snds,22] (* Harvey P. Dale, Jun 12 2020 *)
  • Python
    from sympy import integer_nthroot
    def A104265(n):
        m, a = integer_nthroot((10**n-1)//9,2)
        if not a:
            m += 1
        k = m**2
        while '0' in str(k):
            m += 1
            k += 2*m-1
        return k # Chai Wah Wu, Mar 24 2020

Formula

From Chai Wah Wu, Mar 24 2020: (Start)
a(n) >= (10^n-1)/9.
a(2n) = (10^n+2)^2/9 = A102807(n). Proof: the smallest 2n-digit number without zero digits is (10^(2n)-1)/9. ((10^n-1)/3)^2 = (10^(2n)-2*10^n+1)/9 < (10^(2n)-1)/9 for n >= 1. Thus a(2n) > ((10^n-1)/3)^2. The next square is ((10^n+2)/3)^2 = (10^(2n)-1)/9 + 4*(10^(n)-1)/9 + 1, i.e. it is n 1's followed by n-1 5's followed by the digit 6, and has no zero digits.
(End)

Extensions

More terms from Robert G. Wilson v, Mar 02 2005
Two more terms from Jon E. Schoenfield, Mar 29 2015
a(21)-a(22) from Chai Wah Wu, Mar 24 2020

A104266 Largest n-digit square with no zero digits.

Original entry on oeis.org

9, 81, 961, 9216, 99856, 978121, 9998244, 99321156, 999887641, 9978811236, 99999515529, 999332111556, 9999995824729, 99978881115136, 999999961946176, 9999333211115556, 99999999356895225, 999978918111112681, 9999999986285964964, 99999333321111155556
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2005

Keywords

Comments

See Formula section for exact formula for terms whose index n is divisible by 4, and upper bounds for other cases; see Links for additional information on those other cases. - Jon E. Schoenfield, Mar 30 2015

Examples

			a(3) = Max{...., 729, 784, 841, 961} = 961.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local r;
      r:= floor(sqrt(10^n));
      while has(convert(r^2,base,10),0) do r:= r-1 od:
    r^2
    end proc:
    seq(f(n),n=1..24); # Robert Israel, Mar 29 2015
  • Mathematica
    f[n_] := Block[{k = Floor[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k-- ]; k^2]; Table[ f[n], {n, 18}] (* Robert G. Wilson v, Mar 03 2005 *)
  • PARI
    a(n)=k=floor(sqrt(10^n));while(k,if(type(k)=="t_INT"&&vecmin(digits(k^2)), return(k^2));k--)
    vector(20,n,a(n)) \\ Derek Orr, Mar 29 2015

Formula

From Jon E. Schoenfield, Mar 31 2015: (Start)
If n is divisible by 4, then a(n) = (10^(n/2) - ceiling(10^(n/4)/3))^2;
otherwise, if n is even, then a(n) < 10^(n) * (1 - (10^-((n-2)/4))* 2 / sqrt(90/1.000000000001026)) (see Links for derivation), except that a(2) = 81.
If n is odd, then a(n) ~ (floor(10^(n/2)))^2. (Although (floor(10*(n/2)))^2 gives an obvious upper bound for a(n) for all n, it seems to be a much tighter upper bound for odd values of n.) (End)

Extensions

More terms from Robert G. Wilson v, Mar 03 2005
More terms from Jon E. Schoenfield, Mar 29 2015

A104317 Number of n-digit squares with no zero digits, having roots containing at least one zero.

Original entry on oeis.org

0, 0, 0, 0, 14, 35, 186, 446, 2151, 5579, 22348, 58927, 216816, 583410
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 01 2005

Keywords

Comments

a(n) < A104264(n).

Examples

			a(5) = #{11236=106, 11449=107^2, 11664=108^2, 11881=109^2,
41616=204^2, 42436=206^2, 42849=207^2, 43264=208^2, 43681=209^2,
92416=304^2, 93636=306^2, 94249=307^2, 94864=308^2, 95481=309^2} = 14.
		

Crossrefs

A124650 Number of n-digit numbers m such that m and m^10 are zeroless.

Original entry on oeis.org

3, 14, 42, 141, 399, 1274, 4123, 12688, 39604, 124987, 392908, 1233059, 3869012
Offset: 1

Views

Author

Zak Seidov, Dec 22 2006

Keywords

Examples

			a(3) = 42 because #{113, 118, 125, 142, 144, 166, 172, 176, 186, 187, 195, 228, 244, 263, 268, 296, 315, 334, 357, 367, 376, 383, 387, 388, 396, 426, 467, 527, 563, 573, 574, 662, 764, 773, 783, 788, 863, 883, 885, 892, 976, 992} = 42
Corresponding zeroless 10th powers are:
{339456738992222314849,523383555379856794624,931322574615478515625,
... 318895612267497741289677389824,784328825964927423585898725376,
922819411957263335393616461824}.
		

Crossrefs

Cf. A104264.

Programs

  • Python
    from itertools import product
    def A124650(n):
        return sum(1 for s in product('123456789',repeat=n) if '0' not in str(int(''.join(s))**10)) # Chai Wah Wu, Mar 24 2020

Extensions

a(7)-a(8) from Donovan Johnson, Feb 17 2010
a(9)-a(10) from Chai Wah Wu, Mar 24 2020
a(11)-a(13) from Giovanni Resta, Mar 27 2020
Showing 1-10 of 11 results. Next