cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A124649 Numbers n such that n^i (i=1..8) are all zeroless.

Original entry on oeis.org

1, 2, 3, 6, 68
Offset: 1

Views

Author

Zak Seidov, Dec 22 2006

Keywords

Comments

No other terms < 10^6. Is the sequence finite?
Subsequence of A124648. No other terms below 10^8. - Michel Marcus, Oct 11 2013
a(6) > 3.3*10^16, if it exists. - Giovanni Resta, Sep 07 2018

Examples

			68^i (i=1..8)= 68, 4624, 314432, 21381376, 1453933568, 98867482624, 6722988818432, 457163239653376 all zeroless.
		

Crossrefs

Cf. A104264.

Programs

  • Mathematica
    zLessQ[n_]:=AllTrue[n^Range[8],FreeQ[IntegerDigits[#],0]&]; Select[Range[70],zLessQ] (* Harvey P. Dale, Sep 27 2023 *)
  • PARI
    isok(n) = {for (i = 1, 8, if (! vecmin(digits(n^i)), return (0));); return (1);} \\ Michel Marcus, Oct 11 2013

A253647 Numbers n such that n^k is zeroless for k=0,...,6.

Original entry on oeis.org

1, 2, 3, 5, 6, 14, 17, 68, 76, 96, 188, 483, 518, 582, 736, 786, 1331, 1414, 3944, 4214, 6112, 6676, 8256, 8583, 8686, 9738, 15314, 15483, 33736, 44712, 48989, 61562, 71689, 78512, 93711, 121568, 187791, 239477, 292958, 315426, 545866, 763142, 792612, 1391739
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

Contains A124648 as a subsequence. Primes in this sequence are listed in A253646.
There are 55 terms below 10^7. Conjectured to be finite.

Crossrefs

Programs

  • Mathematica
    Select[Range[14*10^5],Count[Flatten[IntegerDigits/@(#^Range[ 0,6])],0] == 0&] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    is_A253647(n,K=6)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A252484 Numbers m such that m^k is zeroless for k=1,...,4.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 13, 14, 17, 21, 23, 24, 26, 27, 28, 31, 36, 39, 41, 46, 56, 58, 61, 62, 66, 68, 72, 76, 82, 83, 88, 91, 92, 96, 121, 122, 129, 137, 146, 154, 161, 162, 166, 167, 168, 183, 186, 188, 189, 211, 231, 233, 244, 256, 262, 264, 268, 277, 278, 289, 296, 337, 373, 374, 376, 382, 383
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

See A253110 for the primes in this sequence. See A253644 for the subsequence including k=5.

Crossrefs

Cf. A052382, A253643 (k <= 3), A253644 (k <= 5), A253645 (primes, k <= 5), A253647 (k <= 6), A253646 (primes, k <= 6), A124648 (k <= 7), A124649 (k <= 8).
Cf. A104264.

Programs

  • Maple
    filter:= proc(n)
    local j;
    for j from 0 to 4 do
      if has(convert(n^j,base,10),0) then return false fi
    od:
    true
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 15 2015
  • Mathematica
    Select[Range[400],Union[DigitCount[#^Range[4],10,0]]=={0}&] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    is_A252484(n,K=4)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A253644 Numbers n such that n^k is zeroless for k=0,...,5.

Original entry on oeis.org

1, 2, 3, 5, 6, 13, 14, 17, 23, 24, 26, 31, 58, 62, 66, 68, 72, 76, 88, 96, 137, 168, 188, 233, 244, 262, 264, 296, 337, 376, 382, 383, 483, 488, 511, 514, 518, 519, 582, 628, 719, 736, 786, 816, 822, 928, 938, 971, 978, 1122, 1178, 1291, 1331, 1392, 1413, 1414, 1663, 1777
Offset: 1

Views

Author

M. F. Hasler, Jan 07 2015

Keywords

Comments

A subsequence of A252484 (analog for k <= 4) which contains A253647 (analog including k = 6) as a subsequence. Primes in this sequence are listed in A253645.
Conjectured to be finite.

Crossrefs

Programs

  • Maple
    filter:= proc(x)
      local k;
      for k from 1 to 5 do
        if has(convert(x^k,base,10),0) then return false fi
      od:
      true
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 07 2015
  • Mathematica
    Select[Range[2000],Count[Flatten[IntegerDigits/@(#^Range[5])],0]==0&] (* Harvey P. Dale, Jun 10 2017 *)
  • PARI
    is_A253644(n,K=5)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)

A253646 Primes p such that p^k is zeroless for k=1,...,6.

Original entry on oeis.org

2, 3, 5, 17, 48989, 5453971, 61636943111479, 128359315177123, 884785266899689, 1116777231836989
Offset: 1

Views

Author

Zak Seidov and M. F. Hasler, Jan 07 2015

Keywords

Comments

Primes in A253647; both sequences are conjectured to be finite.
The motivation for this sequence lies in the fact that many small primes satisfy the restriction up to k=5 (there are 52 terms below 10^6, cf. A253645), but including k=6 makes the sequence much sparser, with only one term between 17 and 5*10^6, and only one more term below 2*10^9.
The terms 2, 3 and 5 seem to be the only primes in A124648, i.e., satisfy the restriction up to k=7.
a(7) > 10^11. - Chai Wah Wu, Jan 10 2015
a(11) > 3.3*10^16. - Giovanni Resta, Sep 06 2018

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10^7]],Count[Flatten[IntegerDigits/@(#^Range[6])],0] == 0&] (* Harvey P. Dale, May 26 2016 *)
  • PARI
    forprime(p=0,,forstep(k=6,1,-1,vecmin(digits(p^k))||next(2));print1(p","))
    
  • Python
    from sympy import isprime
    A253646_list = [2]
    for i in range(1,10**6,2):
        if not '0' in str(i):
            m = i
            for k in range(5):
                m *= i
                if '0' in str(m):
                    break
            else:
                if isprime(i):
                    A253646_list.append(i) # Chai Wah Wu, Jan 10 2015

Extensions

a(7)-a(10) from Giovanni Resta, Sep 03 2018

A253643 Numbers n such that n^k is zeroless for k=0,...,3.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 35, 36, 38, 39, 41, 44, 46, 54, 56, 57, 58, 61, 62, 65, 66, 68, 72, 75, 76, 77, 81, 82, 83, 85, 88, 91, 92, 96, 111, 113, 114, 119, 121, 122, 125, 129, 132, 133, 136, 137, 139, 146, 154, 156, 157, 158, 161
Offset: 1

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

See A252484 for the subsequence of numbers having this property up to k=4.

Crossrefs

Cf. A052382, A252484 (k <= 4), A253644 (k <= 5), A253645 (primes, k <= 5), A253647 (k <= 6), A253646 (primes, k <= 6), A124648 (k <= 7), A124649 (k <= 8).
Cf. A104264.

Programs

  • Mathematica
    Select[Range[200],AllTrue[#^Range[3],DigitCount[#,10,0]==0&]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 15 2015 *)
  • PARI
    is_A253643(n,K=3)=!forstep(k=K,1,-1,vecmin(digits(n^k))||return)
    
  • Python
    for n in range(100):
      s1,s2,s3 = str(n),str(n**2),str(n**3)
      if s1.find('0') + s2.find('0') + s3.find('0') == -3:
        print(n,end=', ') # Derek Orr, Mar 09 2015

A358340 a(n) is the smallest n-digit number whose fourth power is zeroless.

Original entry on oeis.org

1, 11, 104, 1027, 10267, 102674, 1026708, 10266908, 102669076, 1026690113, 10266901031, 102669009704, 1026690096087, 10266900960914, 102669009608176, 1026690096080369, 10266900960803447, 102669009608034434, 1026690096080341627, 10266900960803409734, 102669009608034097731, 1026690096080340972491
Offset: 1

Views

Author

Mohammed Yaseen, Nov 10 2022

Keywords

Comments

It has been proved that there exist infinitely many zeroless squares and cubes but there is apparently no proof for 4th powers, 5th powers, etc.
This sequence approaches the decimal expansion of 9000^(-1/4). Similar sequences of other small powers k seem to approach the decimal expansion of (9*10^(k-1))^(-1/k).

Crossrefs

Programs

  • PARI
    a(n) = my(x=10^(n-1)); while(! vecmin(digits(x^4)), x++); x; \\ Michel Marcus, Nov 10 2022
    
  • PARI
    a(n) = { my(s = sqrtnint(10^(4*n - 3) \ 9, 4)); for(i = s, oo, c = i^4; if(vecmin(digits(c)) > 0, return(i) ) ) } \\ David A. Corneth, Nov 10 2022
  • Python
    from itertools import count
    from sympy import integer_nthroot
    def a(n):
        start = integer_nthroot(int("1"*(4*(n-1)+1)), 4)[0]
        return next(i for i in count(start) if "0" not in str(i**4))
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 10 2022
    

Formula

a(n) ~ 10^(n + 1/4) / sqrt(3).

Extensions

More terms from David A. Corneth, Nov 10 2022

A385332 Integers k such that the set {k, k^2, ..., k^9} contains at least 8 zeroless numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 17, 68, 121, 786
Offset: 1

Views

Author

Gonzalo Martínez, Jun 25 2025

Keywords

Comments

1, 2, 3, 6 and 68 are the only integers less than 3.3*10^16 such that {k, k^2,..., k^8} are all zeroless (See A124649), but of them 1^9, 2^9 and 3^9 are the only zeroless ones. If we weaken the condition and ask that 8 of the 9 numbers in the set {k, k^2,..., k^9} are zeroless, then more numbers appear that satisfy this property.
Is a(10) = 786 the largest term?

Examples

			5 is a term, since the first nine powers of 5 are: 5, 25, 125, 625, 3125, 15625, 78125, 390625 and 1953125, where 8 of the 9 are zeroless.
		

Crossrefs

Programs

  • Maple
    zless:= n -> not has(convert(n,base,10),0):
    filter:= proc(n) local i; nops(select(zless, [seq(n^i,i=1..9)]))>=8 end proc:
    select(filter, [$1..1000]); # Robert Israel, Jun 26 2025
  • Mathematica
    Select[Range[10^5],Total[Boole/@Positive/@Min/@IntegerDigits/@(#^Range[9])]>7&] (* James C. McMahon, Jul 01 2025 *)
Showing 1-8 of 8 results.